Matching Items (71)
Filtering by

Clear all filters

153998-Thumbnail Image.png
Description
The present study utilized longitudinal data from a high-risk community sample (n=254, 52.8% female, 47.2% children of alcoholics, 74% non-Hispanic Caucasian) to test questions concerning the effects of genetic risk, parental knowledge, and peer substance use on emerging adult substance use disorders (SUDs). Specifically, this study examined whether parental knowledge

The present study utilized longitudinal data from a high-risk community sample (n=254, 52.8% female, 47.2% children of alcoholics, 74% non-Hispanic Caucasian) to test questions concerning the effects of genetic risk, parental knowledge, and peer substance use on emerging adult substance use disorders (SUDs). Specifically, this study examined whether parental knowledge and peer substance use mediated the effects of parent alcohol use disorder (AUD) and genetic risk for behavioral undercontrol on SUD. The current study also examined whether genetic risk moderated effects of parental knowledge and peer substance use on risk for SUD. Finally, this study examined these questions over and above a genetic "control" which explained a large proportion of variance in the outcome, thereby providing a stricter test of environmental influences.

Analyses were performed in a path analysis framework. To test these research questions, the current study employed two polygenic risk scores. The first, a theory-based score, was formed using single-nucleotide polymorphisms (SNPs) from receptor systems implicated in the amplification of positive effects in the presence of new/exciting stimuli and/or pleasure derived from using substances. The second, an empirically-based score, was formed using a data-driven approach that explained a large amount of variance in SUDs. Together, these scores allowed the present study to test explanations for the relations among parent AUD, parental knowledge, peer substance use, and SUDs.

Results of the current study found that having parents with less knowledge or an AUD conferred greater risk for SUDs, but only for those at higher genetic risk for behavioral undercontrol. The current study replicated research findings suggesting that peer substance use mediated the effect of parental AUD on SUD. However, it adds to this literature by suggesting that some mechanism other than increased behavioral undercontrol explains relations among parental AUD, peer substance use, and emerging adult SUD. Taken together, these findings indicate that children of parents with AUDs comprise a particularly risky group, although likelihood of SUD within this group is not uniform. These findings also suggest that some of the most important environmental risk factors for SUDs exert effects that vary across level of genetic propensity.
ContributorsBountress, Kaitlin (Author) / Chassin, Laurie (Thesis advisor) / Crnic, Keith (Committee member) / Lemery-Chalfant, Kathryn (Committee member) / MacKinnon, David (Committee member) / Arizona State University (Publisher)
Created2015
154067-Thumbnail Image.png
Description
Anxiety and depression are among the most prevalent disorders in youth, with prevalence rates ranging from 15% to 25% for anxiety and 5% to 14% for depression. Anxiety and depressive disorders cause significant impairment, fail to spontaneously remit, and have been prospectively linked to problematic substance use and legal problems

Anxiety and depression are among the most prevalent disorders in youth, with prevalence rates ranging from 15% to 25% for anxiety and 5% to 14% for depression. Anxiety and depressive disorders cause significant impairment, fail to spontaneously remit, and have been prospectively linked to problematic substance use and legal problems in adulthood. These disorders often share a high-degree of comorbidity in both clinical and community samples, with anxiety disorders typically preceding the onset of depression. Given the nature and consequences of anxiety and depressive disorders, a plethora of treatment and preventative interventions have been developed and tested with data showing significant pre to post to follow-up reductions in anxiety and depressive symptoms. However, little is known about the mediators by which these interventions achieve their effects. To address this gap in the literature, the present thesis study combined meta-analytic methods and path analysis to evaluate the effects of youth anxiety and depression interventions on outcomes and four theory-driven mediators using data from 55 randomized controlled trials (N = 11,413). The mediators included: (1) information-processing biases, (2) coping strategies, (3) social competence, and (4) physiological hyperarousal. Meta-analytic results showed that treatment and preventative interventions reliably produced moderate effect sizes on outcomes and three of the four mediators (information-processing biases, coping strategies, social competence). Most importantly, findings from the path analysis showed that changes in information-processing biases and coping strategies consistently mediated changes in outcomes for anxiety and depression at both levels of intervention, whereas gains in social competence and reductions in physiological hyperarousal did not emerge as significant mediators. Knowledge of the mediators underlying intervention effects is important because they can refine testable models of treatment and prevention efforts and identify which anxiety and depression components need to be packaged or strengthened to maximize intervention effects. Allocating additional resources to significant mediators has the potential to reduce costs associated with adopting and implementing evidence-based interventions and improve dissemination and sustainability in real-world settings, thus setting the stage to be more readily integrated into clinical and non-clinical settings on a large scale.
ContributorsStoll, Ryan (Author) / Pina, Armando A (Thesis advisor) / MacKinnon, David (Committee member) / Knight, George (Committee member) / Arizona State University (Publisher)
Created2015
152919-Thumbnail Image.png
Description
Monitoring of air pollutants is critical for many applications and studies. In

order to access air pollutants with high spatial and temporal resolutions, it is

necessary

Monitoring of air pollutants is critical for many applications and studies. In

order to access air pollutants with high spatial and temporal resolutions, it is

necessary to develop an affordable, small size and weight, low power, high

sensitivity and selectivity, and wireless enable device that can provide real time

monitoring of air pollutants. Three different kind of such devices are presented, they

are targeting environmental pollutants such as volatile organic components (VOCs),

nitrogen dioxide (NO2) and ozone. These devices employ innovative detection

methods, such as quartz crystal tuning fork coated with molecularly imprinted

polymer and chemical reaction induced color change colorimetric sensing. These

portable devices are validated using the gold standards in the laboratory, and their

functionality and capability are proved during the field tests, make them great tools

for various air quality monitoring applications.
ContributorsChen, Cheng, Ph.D (Author) / Tao, Nongjian (Thesis advisor) / Kiaei, Sayfe (Committee member) / Zhang, Yanchao (Committee member) / Tsow, Tsing (Committee member) / Arizona State University (Publisher)
Created2014
152522-Thumbnail Image.png
Description
Wide spread adoption of photovoltaic technology is limited by cost. Developing photovoltaics based on low-cost materials and processing techniques is one strategy for reducing the cost of electricity generated by photovoltaics. With this in mind, novel porphyrin and porphyrin-fullerene electropolymers have been developed here at Arizona State University. Porphyrins are

Wide spread adoption of photovoltaic technology is limited by cost. Developing photovoltaics based on low-cost materials and processing techniques is one strategy for reducing the cost of electricity generated by photovoltaics. With this in mind, novel porphyrin and porphyrin-fullerene electropolymers have been developed here at Arizona State University. Porphyrins are attractive for inclusion in the light absorbing layer of photovoltaics due to their high absorption coefficients (on the order of 105 cm-1) and porphyrin-fullerene dyads are attractive for use in photovoltaics due to their ability to produce ultrafast photoinduced charge separation (on the order of 10-15 s). The focus of this thesis is the characterization of the photovoltaic properties of these electropolymer films. Films formed on transparent conductive oxide (TCO) substrates were contacted using a mercury drop electrode in order to measure photocurrent spectra and current-voltage curves. Surface treatment of both the TCO substrate and the mercury drop is shown to have a dramatic effect on the photovoltaic performance of the electropolymer films. Treating the TCO substrates with chlorotrimethylsilane and the mercury drop with hexanethiol was found to produce an optimal tradeoff between photocurrent and photovoltage. Incident photon to current efficiency spectra of the films show that the dominant photocurrent generation mechanism in this system is located at the polymer-mercury interface. The optical field intensity at this interface approaches zero due to interference from the light reflected by the mercury surface. Reliance upon photocurrent generation at this interface limits the performance of this system and suggests that these polymers may be useful in solar cells which have structures optimized to take advantage of their internal optical field distributions.
ContributorsBridgewater, James W (Author) / Gust, Devens (Thesis advisor) / Tao, Nongjian (Thesis advisor) / Gould, Ian (Committee member) / Diaz, Rodolfo (Committee member) / Arizona State University (Publisher)
Created2014
153461-Thumbnail Image.png
Description
Methods to test hypotheses of mediated effects in the pretest-posttest control group design are understudied in the behavioral sciences (MacKinnon, 2008). Because many studies aim to answer questions about mediating processes in the pretest-posttest control group design, there is a need to determine which model is most appropriate to

Methods to test hypotheses of mediated effects in the pretest-posttest control group design are understudied in the behavioral sciences (MacKinnon, 2008). Because many studies aim to answer questions about mediating processes in the pretest-posttest control group design, there is a need to determine which model is most appropriate to test hypotheses about mediating processes and what happens to estimates of the mediated effect when model assumptions are violated in this design. The goal of this project was to outline estimator characteristics of four longitudinal mediation models and the cross-sectional mediation model. Models were compared on type 1 error rates, statistical power, accuracy of confidence interval coverage, and bias of parameter estimates. Four traditional longitudinal models and the cross-sectional model were assessed. The four longitudinal models were analysis of covariance (ANCOVA) using pretest scores as a covariate, path analysis, difference scores, and residualized change scores. A Monte Carlo simulation study was conducted to evaluate the different models across a wide range of sample sizes and effect sizes. All models performed well in terms of type 1 error rates and the ANCOVA and path analysis models performed best in terms of bias and empirical power. The difference score, residualized change score, and cross-sectional models all performed well given certain conditions held about the pretest measures. These conditions and future directions are discussed.
ContributorsValente, Matthew John (Author) / MacKinnon, David (Thesis advisor) / West, Stephen (Committee member) / Aiken, Leona (Committee member) / Enders, Craig (Committee member) / Arizona State University (Publisher)
Created2015
153071-Thumbnail Image.png
Description
Understanding the interplay between the electrical and mechanical properties of single molecules is of fundamental importance for molecular electronics. The sensitivity of charge transport to mechanical fluctuations is a key problem in developing long lasting molecular devices. Furthermore, harnessing this response to mechanical perturbation, molecular devices which can be mechanically

Understanding the interplay between the electrical and mechanical properties of single molecules is of fundamental importance for molecular electronics. The sensitivity of charge transport to mechanical fluctuations is a key problem in developing long lasting molecular devices. Furthermore, harnessing this response to mechanical perturbation, molecular devices which can be mechanically gated can be developed. This thesis demonstrates three examples of the unique electromechanical properties of single molecules.

First, the electromechanical properties of 1,4-benzenedithiol molecular junctions are investigate. Counterintuitively, the conductance of this molecule is found to increase by more than an order of magnitude when stretched. This conductance increase is found to be reversible when the molecular junction is compressed. The current-voltage, conductance-voltage and inelastic electron tunneling spectroscopy characteristics are used to attribute the conductance increase to a strain-induced shift in the frontier molecular orbital relative to the electrode Fermi level, leading to resonant enhancement in the conductance.

Next, the effect of stretching-induced structural changes on charge transport in DNA molecules is studied. The conductance of single DNA molecules with lengths varying from 6 to 26 base pairs is measured and found to follow a hopping transport mechanism. The conductance of DNA molecules is highly sensitive to mechanical stretching, showing an abrupt decrease in conductance at surprisingly short stretching distances, with weak dependence on DNA length. This abrupt conductance decrease is attributed to force-induced breaking of hydrogen bonds in the base pairs at the end of the DNA sequence.

Finally, the effect of small mechanical modulation of the base separation on DNA conductance is investigated. The sensitivity of conductance to mechanical modulation is studied for molecules of different sequence and length. Sequences with purine-purine stacking are found to be more responsive to modulation than purine-pyrimidine sequences. This sensitivity is attributed to the perturbation of &pi-&pi stacking interactions and resulting effects on the activation energy and electronic coupling for the end base pairs.
ContributorsBruot, Christopher, 1986- (Author) / Tao, Nongjian (Thesis advisor) / Lindsay, Stuart (Committee member) / Mujica, Vladimiro (Committee member) / Ferry, David (Committee member) / Arizona State University (Publisher)
Created2014
155174-Thumbnail Image.png
Description
Monitoring vital physiological signals, such as heart rate, blood pressure and breathing pattern, are basic requirements in the diagnosis and management of various diseases. Traditionally, these signals are measured only in hospital and clinical settings. An important recent trend is the development of portable devices for tracking these physiological signals

Monitoring vital physiological signals, such as heart rate, blood pressure and breathing pattern, are basic requirements in the diagnosis and management of various diseases. Traditionally, these signals are measured only in hospital and clinical settings. An important recent trend is the development of portable devices for tracking these physiological signals non-invasively by using optical methods. These portable devices, when combined with cell phones, tablets or other mobile devices, provide a new opportunity for everyone to monitor one’s vital signs out of clinic.

This thesis work develops camera-based systems and algorithms to monitor several physiological waveforms and parameters, without having to bring the sensors in contact with a subject. Based on skin color change, photoplethysmogram (PPG) waveform is recorded, from which heart rate and pulse transit time are obtained. Using a dual-wavelength illumination and triggered camera control system, blood oxygen saturation level is captured. By monitoring shoulder movement using differential imaging processing method, respiratory information is acquired, including breathing rate and breathing volume. Ballistocardiogram (BCG) is obtained based on facial feature detection and motion tracking. Blood pressure is further calculated from simultaneously recorded PPG and BCG, based on the time difference between these two waveforms.

The developed methods have been validated by comparisons against reference devices and through pilot studies. All of the aforementioned measurements are conducted without any physical contact between sensors and subjects. The work presented herein provides alternative solutions to track one’s health and wellness under normal living condition.
ContributorsShao, Dangdang (Author) / Tao, Nongjian (Thesis advisor) / Li, Baoxin (Committee member) / Hekler, Eric (Committee member) / Karam, Lina (Committee member) / Arizona State University (Publisher)
Created2016
155525-Thumbnail Image.png
Description
Studying charge transport through single molecules is of great importance for unravelling charge transport mechanisms, investigating fundamentals of chemistry, and developing functional building blocks in molecular electronics.

First, a study of the thermoelectric effect in single DNA molecules is reported. By varying the molecular length and sequence, the charge transport in

Studying charge transport through single molecules is of great importance for unravelling charge transport mechanisms, investigating fundamentals of chemistry, and developing functional building blocks in molecular electronics.

First, a study of the thermoelectric effect in single DNA molecules is reported. By varying the molecular length and sequence, the charge transport in DNA was tuned to either a hopping- or tunneling-dominated regimes. In the hopping regime, the thermoelectric effect is small and insensitive to the molecular length. Meanwhile, in the tunneling regime, the thermoelectric effect is large and sensitive to the length. These findings indicate that by varying its sequence and length, the thermoelectric effect in DNA can be controlled. The experimental results are then described in terms of hopping and tunneling charge transport models.

Then, I showed that the electron transfer reaction of a single ferrocene molecule can be controlled with a mechanical force. I monitor the redox state of the molecule from its characteristic conductance, detect the switching events of the molecule from reduced to oxidized states with the force, and determine a negative shift of ~34 mV in the redox potential under force. The theoretical modeling is in good agreement with the observations, and reveals the role of the coupling between the electronic states and structure of the molecule.

Finally, conclusions and perspectives were discussed to point out the implications of the above works and future studies that can be performed based on the findings.
ContributorsLi, Yueqi, Ph.D (Author) / Tao, Nongjian (Thesis advisor) / Buttry, Daniel (Committee member) / Mujica, Vladimiro (Committee member) / Arizona State University (Publisher)
Created2017
155680-Thumbnail Image.png
Description
The current study utilized data from two longitudinal samples to test mechanisms in the relation between a polygenic risk score indexing serotonin functioning and alcohol use in adolescence. Specifically, this study tested whether individuals with lower levels of serotonin functioning as indexed by a polygenic risk score were vulnerable to

The current study utilized data from two longitudinal samples to test mechanisms in the relation between a polygenic risk score indexing serotonin functioning and alcohol use in adolescence. Specifically, this study tested whether individuals with lower levels of serotonin functioning as indexed by a polygenic risk score were vulnerable to poorer self-regulation, and whether poorer self-regulation subsequently predicted the divergent outcomes of depressive symptoms and aggressive/antisocial behaviors. This study then examined whether depressive symptoms and aggressive/antisocial behaviors conferred risk for later alcohol use in adolescence, and whether polygenic risk and effortful control had direct effects on alcohol use that were not mediated through problem behaviors. Finally, the study examined the potential moderating role of gender in these pathways to alcohol use.

Structural equation modeling was used to test hypotheses. Results from an independent genome-wide association study of 5-hydroxyindoleacetic acid in the cerebrospinal fluid were used to create serotonin (5-HT) polygenic risk scores, wherein higher scores reflected lower levels of 5-HT functioning. Data from three time points were drawn from each sample, and all paths were prospective. Findings suggested that 5-HT polygenic risk did not predict self-regulatory constructs. However, 5-HT polygenic risk did predict the divergent outcomes of depression and aggression/antisociality, such that higher levels of 5-HT polygenic risk predicted greater levels of depression and aggression/antisociality. Results most clearly supported adolescents’ aggression/antisociality as a mechanism in the relation between 5-HT polygenic risk and later alcohol use. Deficits in self-regulation also predicted depression and aggression/antisociality, and indirectly predicted alcohol use through aggression/antisociality. These pathways to alcohol use might be the most salient for boys with low levels of socioeconomic status.

Results are novel contributions to the literature. The previously observed association between serotonin functioning and alcohol use might be due, in part, to the fact that individuals with lower levels of serotonin functioning are predisposed towards developing earlier aggression/antisociality. Results did not support the hypothesis that serotonin functioning predisposes individuals to deficits in self-regulatory abilities. Findings extend previous research by suggesting that serotonin functioning and self-regulation might be transdiagnostic risk factors for many types of psychopathology.
ContributorsWang, Frances Lynn (Author) / Chassin, Laurie (Thesis advisor) / Eisenberg, Nancy (Committee member) / Lemery-Chalfant, Kathryn (Committee member) / MacKinnon, David (Committee member) / Arizona State University (Publisher)
Created2017
155688-Thumbnail Image.png
Description
Antibiotic resistant bacteria are a worldwide epidemic threatening human survival. Antimicrobial susceptibility tests (ASTs) are important for confirming susceptibility to empirical antibiotics and detecting resistance in bacterial isolates. Current ASTs are based on bacterial culturing, which take 2-14 days to complete depending on the microbial growth rate. Considering the high

Antibiotic resistant bacteria are a worldwide epidemic threatening human survival. Antimicrobial susceptibility tests (ASTs) are important for confirming susceptibility to empirical antibiotics and detecting resistance in bacterial isolates. Current ASTs are based on bacterial culturing, which take 2-14 days to complete depending on the microbial growth rate. Considering the high mortality and morbidity rates for most acute infections, such long time frames are clinically impractical and pose a huge risk to a patient's life. A faster AST will reduce morbidity and mortality rates, as well as help healthcare providers, administer narrow spectrum antibiotics at the earliest possible treatment stage.

In this dissertation, I developed a nonculture-based AST using an imaging and cell tracking technology. I track individual Escherichia coli O157:H7 (E. coli O157:H7) Uropathogenic Escherichia Coli (UPEC) cells, widely implicated in food-poisoning outbreaks and urinary tract infections respectively. Cells tethered to a surface are tracked on the nanometer scale, and phenotypic motion is correlated with bacterial metabolism. Antibiotic action significantly slows down motion of tethered bacterial cells, which is used to perform antibiotic susceptibility testing. Using this technology, the clinical minimum bactericidal concentration of an antibiotic against UPEC pathogens was calculated within 2 hours directly in urine samples as compared to 3 days using current gold standard tools.

Such technologies can make a tremendous impact to improve the efficacy and efficiency of infectious disease treatment. This has the potential to reduce the antibiotic mis-prescription steeply, which can drastically decrease the annual 2M+ hospitalizations and 23,000+ deaths caused due to antibiotic resistance bacteria along with saving billions of dollars to payers, patients, and hospitals.
ContributorsSyal, Karan (Author) / Tao, Nongjian (Thesis advisor) / Haydel, Shelley (Committee member) / Rege, Kaushal (Committee member) / Wang, Shaopeng (Committee member) / Haynes, Karmella (Committee member) / Arizona State University (Publisher)
Created2017