Matching Items (137)
Filtering by

Clear all filters

171971-Thumbnail Image.png
Description
Protein-nucleic acid interactions are ubiquitous in biological systems playing a pivotal role in fundamental processes such as replication, transcription and translation. These interactions have been extensively used to develop biosensors, imaging techniques and diagnostic tools.This dissertation focuses on design of a small molecule responsive biosensor that employs transcription factor/deoxyribonucleic acid

Protein-nucleic acid interactions are ubiquitous in biological systems playing a pivotal role in fundamental processes such as replication, transcription and translation. These interactions have been extensively used to develop biosensors, imaging techniques and diagnostic tools.This dissertation focuses on design of a small molecule responsive biosensor that employs transcription factor/deoxyribonucleic acid (DNA) interactions to detect 10 different analytes including antibiotics such as tetracyclines and erythromycin. The biosensor harnesses the multi-turnover collateral cleavage activity of Cas12a to provide signal amplification in less than an hour that can be monitored using fluorescence as well as on paper based diagnostic devices. In addition, the functionality of this assay was preserved when testing tap water and wastewater spiked with doxycycline. Overall, this biosensor has potential to expand the range of small molecule detection and can be used to identify environmental contaminants. In second part of the dissertation, interactions between nonribosomal peptide synthetases (NRPS) and ribonucleic acid (RNA) were utilized for programming the synthesis of nonribosomal peptides. RNA scaffolds harboring peptide binding aptamers and interconnected using kissing loops to guide the assembly of NRPS modules modified with corresponding aptamer-binding peptides were built. A successful chimeric assembly of Ent synthetase modules was shown that was characterized by the production of Enterobactin siderophore. It was found that the programmed RNA/NRPS assembly could achieve up to 60% of the yield of wild-type biosynthetic pathway of the iron-chelator enterobactin. Finally, a cas12a-based detection method for discriminating short tandem repeats where a toehold exchange mechanism was designed to distinguish different numbers of repeats found in Huntington’s disease, Spinocerebellar ataxia type 10 and type 36. It was observed that the system discriminates well when lesser number of repeats are present and provides weaker resolution as the size of DNA strands increases. Additionally, the system can identify Kelch13 mutations such as P553L, N458Y and F446I from the wildtype sequence for Artemisinin resistance detection. This dissertation demonstrates the great utility of harnessing protein-nucleic acid interactions to construct biomolecular devices for detecting clinically relevant nucleic acid mutations, a variety of small molecule analyte and programming the production of useful molecules.
ContributorsChaudhary, Soma (Author) / Green, Alexander (Thesis advisor) / Stephanopoulos, Nicholas (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2022
190960-Thumbnail Image.png
Description
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic, declared in March 2020 resulted in an unprecedented scientific effort that led to the deployment in less than a year of several vaccines to prevent severe disease, hospitalizations, and death from coronavirus disease 2019 (COVID-19). Most vaccine models focus on the

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic, declared in March 2020 resulted in an unprecedented scientific effort that led to the deployment in less than a year of several vaccines to prevent severe disease, hospitalizations, and death from coronavirus disease 2019 (COVID-19). Most vaccine models focus on the production of neutralizing antibodies against the spike (S) to prevent infection. As the virus evolves, new variants emerge that evade neutralizing antibodies produced by natural infection and vaccination, while memory T cell responses are long-lasting and resilient to most of the changes found in variants of concern (VOC). Several lines of evidence support the study of T cell-mediated immunity in SARS-CoV-2 infections. First, T cell reactivity against SARS-CoV-2 is found in both (cluster of differentiation) CD4+ and CD8+ T cell compartments in asymptomatic, mild, and severe recovered COVID-19 patients. Second, an early and stronger CD8+ T cell response correlates with less severe COVID-19 disease [1-4]. Third, both CD4+ and CD8+ T cells that are reactive to SARS-CoV-2 viral antigens are found in healthy unexposed individuals suggesting that cross-reactive and conserved epitopes may be protective against infection. The current study is focused on the T cell-mediated response, with special attention to conserved, non-spike-cross-reactive epitopes that may be protective against SARS-CoV-2. The first chapter reviews the importance of epitope prediction in understanding the T cell-mediated responses to a pathogen. The second chapter centers on the validation of SARS-CoV-2 CD8+ T cell predicted peptides to find conserved, immunodominant, and immunoprevalent epitopes that can be incorporated into the next generation of vaccines against severe COVID-19 disease. The third chapter explores pre-existing immunity to SARS-CoV-2 in a pre-pandemic cohort and finds two highly immunogenic epitopes that are conserved among human common cold coronaviruses (HCoVs). To end, the fourth chapter explores the concept of T cell receptor (TCR) cross-reactivity by isolating SARS-CoV-2-reactive TCRs to elucidate the mechanisms of cross-reactivity to SARS-CoV-2 and other human coronaviruses (HCoVs).
ContributorsCarmona, Jacqueline (Author) / Anderson, Karen S (Thesis advisor) / Lake, Douglas (Thesis advisor) / Maley, Carlo (Committee member) / Mangone, Marco (Committee member) / LaBaer, Joshua (Committee member) / Arizona State University (Publisher)
Created2023
190922-Thumbnail Image.png
Description
Mutation is the source of heritable variation of genotype and phenotype, on which selection may act. Mutation rates describe a fundamental parameter of living things, which influence the rate at which evolution may occur, from viral pathogens to human crops and even to aging cells and the emergence of cancer.

Mutation is the source of heritable variation of genotype and phenotype, on which selection may act. Mutation rates describe a fundamental parameter of living things, which influence the rate at which evolution may occur, from viral pathogens to human crops and even to aging cells and the emergence of cancer. An understanding of the variables which impact mutation rates and their estimation is necessary to place mutation rate estimates in their proper contexts. To better understand mutation rate estimates, this research investigates the impact of temperature upon transcription rate error estimates; the impact of growing cells in liquid culture vs. on agar plates; the impact of many in vitro variables upon the estimation of deoxyribonucleic acid (DNA) mutation rates from a single sample; and the mutational hazard induced by expressing clustered regularly interspaced short palindromic repeat (CRISPR) proteins in yeast. This research finds that many of the variables tested did not significantly alter the estimation of mutation rates, strengthening the claims of previous mutation rate estimates across the tree of life by diverse experimental approaches. However, it is clear that sonication is a mutagen of DNA, part of an effort which has reduced the sequencing error rate of circle-seq by over 1,000-fold. This research also demonstrates that growth in liquid culture modestly skews the mutation spectrum of MMR- Escherichia coli, though it does not significantly impact the overall mutation rate. Finally, this research demonstrates a modest mutational hazard of expressing Cas9 and similar CRISPR proteins in yeast cells at an un-targeted genomic locus, though it is possible the indel rate has been increased by an order of magnitude.
ContributorsBaehr, Stephan (Author) / Lynch, Michael (Thesis advisor) / Geiler-Samerotte, Kerry (Committee member) / Mangone, Marco (Committee member) / Wilson, Melissa (Committee member) / Arizona State University (Publisher)
Created2023
Description
The purpose of this experiment was to use real-time quantitative polymerase chain reactions (RT-qPCR) to quantify and analyze differences in expression of U1 snRNA variants across four different human Leukemia cell lines. We found a number of interesting results in the four cell lines. Two variants in particular (vU1.15 and

The purpose of this experiment was to use real-time quantitative polymerase chain reactions (RT-qPCR) to quantify and analyze differences in expression of U1 snRNA variants across four different human Leukemia cell lines. We found a number of interesting results in the four cell lines. Two variants in particular (vU1.15 and vU1.19), were only expressed in one leukemia cell line each, indicating a potential link between their specific mutations and the type of leukemia associated with the cell lines in which they were expressed. Further research should be conducted to understand these differences and uncover potential clinical applications.
ContributorsLawrence, Ethan (Author) / Mangone, Marco (Thesis director) / Sharma, Shalini (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2023-12
Description
Political polarization, or the inclination to align with the identity, ideologies, and candidates of a party that results in subsequent partisan animosity that creates divisions between these groups, can prevent important policies from getting passed. Policies related to sustainability, defined as that which “meets the needs of the present without

Political polarization, or the inclination to align with the identity, ideologies, and candidates of a party that results in subsequent partisan animosity that creates divisions between these groups, can prevent important policies from getting passed. Policies related to sustainability, defined as that which “meets the needs of the present without compromising the ability of future generations to meet their own needs,” have been found to be particularly vulnerable to polarization (Brundtland, 1987). This research analyzes literature and expert interviews to provide recommendations and strategies that can be employed by sustainability advocates to get important policies passed despite the divisive political arena. The research concluded that public salience of sustainability issues, presentation of the co-benefits of sustainability policies, relationships amongst elected officials, and use of politically neutral language are especially important to garnering bipartisan support for sustainability policies. Based on these conclusions, strategies were recommended for sustainability advocates to use to overcome political polarization including bolstering communication skills to demonstrate how people are affected by sustainability issues and can benefit from sustainability policies and giving careful and continuous consideration to the words, phrases, and labels used to describe sustainability policies. A final recommendation is to examine political polarization and sustainability at the municipal level since this research indicated that this is a relatively under-examined context.
ContributorsBarlett, Riley (Author) / Melnick, Rob (Thesis director) / Kay, Braden (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Sustainability (Contributor)
Created2023-12
171957-Thumbnail Image.png
Description
Cocaine induces long-lasting changes in mesolimbic ‘reward’ circuits of the brain after cessation of use. These lingering changes include the neuronal plasticity that is thought to underlie the chronic relapsing nature of substance use disorders. Genes involved in neuronal plasticity also encode circular RNAs (circRNAs), which are stable, non-coding RNAs

Cocaine induces long-lasting changes in mesolimbic ‘reward’ circuits of the brain after cessation of use. These lingering changes include the neuronal plasticity that is thought to underlie the chronic relapsing nature of substance use disorders. Genes involved in neuronal plasticity also encode circular RNAs (circRNAs), which are stable, non-coding RNAs formed through the back-splicing of pre-mRNA. The Homer1 gene family, which encodes proteins associated with cocaine-induced plasticity, also encodes circHomer1. Based on preliminary evidence from shows cocaine-regulated changes in the ratio of circHomer1 and Homer1b mRNA in the nucleus accumbens (NAc), this study examined the relationship between circHomer1 and incentive motivation for cocaine by using different lengths of abstinence to vary the degree of motivation. Male and female rats were trained to self-administer cocaine (0.75 mg/kg/infusion, IV) or received a yoked saline infusion. Rats proceeded on an increasingly more difficult variable ratio schedule of lever pressing until they reached a variable ratio 5 schedule, which requires an average of 5 lever presses, and light and tone cues were delivered with the drug infusions. Rats were then tested for cocaine-seeking behavior in response to cue presentations without drug delivery either 1 or 21 days after their last self-administration session. They were sacrificed immediately after and circHomer1 and Homer1b expression was then measured from homogenate and synaptosomal fractions of NAc shell using RT-qPCR. Lever pressing during the cue reactivity test increased from 1 to 21 days of abstinence as expected. Results showed no group differences in synaptic circHomer1 expression, however, total circHomer1 expression was downregulated in 21d rats compared to controls. Lack of change in synaptic circHomer1 was likely due to trends toward different temporal changes in males versus females. Total Homer1b expression was higher in females, although there was no effect of cocaine abstinence. Further research investigating the time course of circHomer1 and Homer1b expression is warranted based on the inverse relationship between total circHomer1and cocaine-seeking behavior observed in this study.
ContributorsJohnson, Michael Christian (Author) / Neisewander, Janet L (Thesis advisor) / Perrone-Bizzozero, Nora (Thesis advisor) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2022
171311-Thumbnail Image.png
Description
Type 1 diabetes (T1D) is the result of an autoimmune attack against the insulin-producing β-cells of the pancreas causing hyperglycemia and requiring the individual to rely on life-long exogenous insulin. With the age of onset typically occurring in childhood, there is increased physical and emotional stress to the child as

Type 1 diabetes (T1D) is the result of an autoimmune attack against the insulin-producing β-cells of the pancreas causing hyperglycemia and requiring the individual to rely on life-long exogenous insulin. With the age of onset typically occurring in childhood, there is increased physical and emotional stress to the child as well as caregivers to maintain appropriate glucose levels. The majority of T1D patients have antibodies to one or more antigens: insulin, IA-2, GAD65, and ZnT8. Although antibodies are detectable years before symptoms occur, the initiating factors and mechanisms of progression towards β-cell destruction are still not known. The search for new autoantibodies to elucidate the autoimmune process in diabetes has been slow, with proteome level screenings on native proteins only finding a few minor antigens. Post-translational modifications (PTM)—chemical changes that occur to the protein after translation is complete—are an unexplored way a self-protein could become immunogenic. This dissertation presents the first large sale screening of autoantibodies in T1D to nitrated proteins. The Contra Capture Protein Array (CCPA) allowed for fresh expression of hundreds of proteins that were captured on a secondary slide by tag-specific ligand and subsequent modification with peroxynitrite. The IgG and IgM humoral response of 48 newly diagnosed T1D subjects and 48 age-matched controls were screened against 1632 proteins highly or specifically expressed in pancreatic cells. Top targets at 95% specificity were confirmed with the same serum samples using rapid antigenic protein in situ display enzyme-linked immunosorbent assay (RAPID ELISA) a modified sandwich ELISA employing the same cell-free expression as the CCPA. For validation, 8 IgG and 5 IgM targets were evaluated with an independent serum sample set of 94 T1D subjects and 94 controls. The two best candidates at 90% specificity were estrogen receptor 1 (ESR1) and phosphatidylinositol 4-kinase type 2 beta (PI4K2B) which had sensitivities of 22% (p=.014) and 25% (p=.045), respectively. Receiver operating characteristic (ROC) analyses found an area under curve (AUC) of 0.6 for ESR1 and 0.58 for PI4K2B. These studies demonstrate the ability and value for high-throughput autoantibody screening to modified antigens and the frequency of Type 1 diabetes.
ContributorsHesterman, Jennifer (Author) / LaBaer, Joshua (Thesis advisor) / Borges, Chad (Committee member) / Sweazea, Karen (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2022
Description

Bdellovibrio bacteriovorus (B. bacteriovorus) is a predatory bacterium that preys on other gram-negative bacteria. In order to survive and reproduce, B. bacteriovorus invades the periplasm of other bacterial cells creating the potential for it to act as a “living antibiotic”. In this work, a comparison was made between the rates

Bdellovibrio bacteriovorus (B. bacteriovorus) is a predatory bacterium that preys on other gram-negative bacteria. In order to survive and reproduce, B. bacteriovorus invades the periplasm of other bacterial cells creating the potential for it to act as a “living antibiotic”. In this work, a comparison was made between the rates of predation of B. bacteriovorus in vitro and in vivo. In vitro, the behavior of B. bacteriovorus was examined in the presence of prey. In vivo, the behavior of B. bacteriovorus was examined in the presence of prey and a living host, Caenorhabditis elegans (C. elegans). C. elegans were infected with Escherichia coli (E. coli) and treated with B. bacteriovorus. In previous studies that analyzed B. bacteriovorus in vitro, a decrease in concentrations of bacteria has been observed after introduction of B. bacteriovorus. In vivo, B. bacteriovorus were found to not have a net reduction of E. coli but to reproducibly raise the level of fluctuations in E. coli concentrations.

ContributorsPerry, Nicole (Author) / Presse, Steve (Thesis director) / Mangone, Marco (Committee member) / Barrett, The Honors College (Contributor) / Economics Program in CLAS (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
168425-Thumbnail Image.png
Description
The RNA editing enzyme adenosine deaminase acting on double stranded RNA 2 (ADAR2) converts adenosine into inosine in regions of double stranded RNA. Here, it was discovered that this critical function of ADAR2 was dysfunctional in amyotrophic lateral sclerosis (ALS) mediated by the C9orf72 hexanucleotide repeat expansion, the most common

The RNA editing enzyme adenosine deaminase acting on double stranded RNA 2 (ADAR2) converts adenosine into inosine in regions of double stranded RNA. Here, it was discovered that this critical function of ADAR2 was dysfunctional in amyotrophic lateral sclerosis (ALS) mediated by the C9orf72 hexanucleotide repeat expansion, the most common genetic abnormality associated with ALS. Typically a nuclear protein, ADAR2 was localized in cytoplasmic accumulations in postmortem tissue from C9orf72 ALS patients. The mislocalization of ADAR2 was confirmed using immunostaining in a C9orf72 mouse model and motor neurons differentiated from C9orf72 patient induced pluripotent stem cells. Notably, the cytoplasmic accumulation of ADAR2 coexisted in neurons with cytoplasmic accumulations of TAR DNA binding protein 43 (TDP-43). Interestingly, ADAR2 overexpression in mammalian cell lines induced nuclear depletion and cytoplasmic accumulation of TDP-43, reflective of the pathology observed in ALS patients. The mislocalization of TDP-43 was dependent on the catalytic activity of ADAR2 and the ability of TDP-43 to bind directly to inosine containing RNA. In addition, TDP-43 nuclear export was significantly elevated in cells with increased RNA editing. Together these results describe a novel cellular mechanism by which alterations in RNA editing drive the nuclear export of TDP-43 leading to its cytoplasmic mislocalization. Considering the contribution of cytoplasmic TDP-43 to the pathogenesis of ALS, these findings represent a novel understanding of how the formation of pathogenic cytoplasmic TDP-43 accumulations may be initiated. Further research exploring this mechanism will provide insights into opportunities for novel therapeutic interventions.
ContributorsMoore, Stephen Philip (Author) / Sattler, Rita (Thesis advisor) / Zarnescu, Daniela (Committee member) / Brafman, David (Committee member) / Van Keuren-Jensen, Kendall (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2021
187431-Thumbnail Image.png
Description
MicroRNAs (miRNAs) are 17-22 nucleotide non-coding RNAs that regulate gene expression by targeting non-complementary elements in the 3’ untranslated regions (3’UTRs) of mRNAs. miRNAs, which form complex networks of interaction that differ by tissue and developmental stage, display conservation in their function across metazoan species. Yet much remains unknown regarding

MicroRNAs (miRNAs) are 17-22 nucleotide non-coding RNAs that regulate gene expression by targeting non-complementary elements in the 3’ untranslated regions (3’UTRs) of mRNAs. miRNAs, which form complex networks of interaction that differ by tissue and developmental stage, display conservation in their function across metazoan species. Yet much remains unknown regarding their biogenesis, localization, strand selection, and their absolute abundance due to the difficulty of detecting and amplifying such small molecules. Here, I used an updated HT qPCR-based methodology to follow miRNA expression of 5p and 3p strands for all 190 C. elegans miRNAs described in miRBase throughout all six developmental stages in triplicates (total of 9,708 experiments), and studied their expression levels, tissue localization, and the rules underlying miRNA strand selection. My study validated previous findings and identified novel, conserved patterns of miRNA strand expression throughout C. elegans development, which at times correlate with previously observed developmental phenotypes. Additionally, my results highlighted novel structural principles underlying strand selection, which can be applied to higher metazoans. Though optimized for use in C. elegans, this method can be easily adapted to other eukaryotic systems, allowing for more scalable quantitative investigation of miRNA biology and/or miRNA diagnostics.
ContributorsMeadows, Dalton Alexander (Author) / Mangone, Marco (Thesis advisor) / LaBaer, Joshua (Committee member) / Murugan, Vel (Committee member) / Wilson-Rawls, Jeanne (Committee member) / Arizona State University (Publisher)
Created2023