Matching Items (45)
Filtering by

Clear all filters

148085-Thumbnail Image.png
Description

Is there a mismatch between urban farmers’ perceptions of their farm’s environmental sustainability and its actual environmental impact? Focusing on the use of water and nutrients on each farm as described by the farmers through interviews, it is evident that there is some level of disconnect between ideals and practices.

Is there a mismatch between urban farmers’ perceptions of their farm’s environmental sustainability and its actual environmental impact? Focusing on the use of water and nutrients on each farm as described by the farmers through interviews, it is evident that there is some level of disconnect between ideals and practices. This project may aid in bridging the gap between the two in regard to the farmers’ sustainability goals. This project will move forward by continuing interviews with farmers as well as collecting soil and water from the farms in order to more accurately quantify the sustainability of the farms’ practices. This project demonstrates that there is some degree of misalignment between perception and reality. Two farms claimed they were sustainable when their practices did not reflect that, while 2 farms said they were not sure if they were sustainable when their practices indicated otherwise. Samples from two farms showed high concentrations of nutrients and salts, supporting the idea that there may be a mismatch between perceived and actual sustainability.

ContributorsBonham, Emma Eileen (Author) / Muenich, Rebecca (Thesis director) / Zanin, Alaina (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / School of Sustainability (Contributor) / School of Sustainable Engineering & Built Envirnmt (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136153-Thumbnail Image.png
Description
Along with the number of technologies that have been introduced over a few years ago, gesture-based human-computer interactions are becoming the new phase in encompassing the creativity and abilities for users to communicate and interact with devices. Because of how the nature of defining free-space gestures influence user's preference and

Along with the number of technologies that have been introduced over a few years ago, gesture-based human-computer interactions are becoming the new phase in encompassing the creativity and abilities for users to communicate and interact with devices. Because of how the nature of defining free-space gestures influence user's preference and the length of usability of gesture-driven devices, defined low-stress and intuitive gestures for users to interact with gesture recognition systems are necessary to consider. To measure stress, a Galvanic Skin Response instrument was used as a primary indicator, which provided evidence of the relationship between stress and intuitive gestures, as well as user preferences towards certain tasks and gestures during performance. Fifteen participants engaged in creating and performing their own gestures for specified tasks that would be required during the use of free-space gesture-driven devices. The tasks include "activation of the display," scroll, page, selection, undo, and "return to main menu." They were also asked to repeat their gestures for around ten seconds each, which would give them time and further insight of how their gestures would be appropriate or not for them and any given task. Surveys were given at different time to the users: one after they had defined their gestures and another after they had repeated their gestures. In the surveys, they ranked their gestures based on comfort, intuition, and the ease of communication. Out of those user-ranked gestures, health-efficient gestures, given that the participants' rankings were based on comfort and intuition, were chosen in regards to the highest ranked gestures.
ContributorsLam, Christine (Author) / Walker, Erin (Thesis director) / Danielescu, Andreea (Committee member) / Barrett, The Honors College (Contributor) / Ira A. Fulton School of Engineering (Contributor) / School of Arts, Media and Engineering (Contributor) / Department of English (Contributor) / Computing and Informatics Program (Contributor)
Created2015-05
137817-Thumbnail Image.png
Description
G3Box's 2013 Marketing Plan outlines a strategic plan and short term operational strategies for the company. The document includes a discussion of the company's decision to enter the market for healthcare facilities in developing counties, and a situation assessment of the market conditions. G3Box is targeting small and large NGOs

G3Box's 2013 Marketing Plan outlines a strategic plan and short term operational strategies for the company. The document includes a discussion of the company's decision to enter the market for healthcare facilities in developing counties, and a situation assessment of the market conditions. G3Box is targeting small and large NGOs that currently provide healthcare facilities in developing countries. The market size for healthcare aid in developing countries is estimated to be $1.7 billion. The plan also analyses the customer's value chain and buying cycle by using voice of the customer data. The strategic position analysis profiles G3Box's competition and discusses the company's differential advantage versus other options for healthcare facilities in developing countries. Next the document discusses G3Box's market strategy and implementation, along with outlining a value proposition for the company. G3Box has two objectives for 2013: 1) Increase sales revenue to $1.3 million and 2) increase market presence to 25%. In order to reach these objectives, G3Box has developed a primary and secondary strategic focus for each objective. The primary strategies are relationship selling and online marketing. The secondary strategies are developing additional value-added activities and public relations.
ContributorsWalters, John (Author) / Denning, Michael (Thesis director) / Ostrom, Lonnie (Committee member) / Carroll, James (Committee member) / Barrett, The Honors College (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2012-12
137819-Thumbnail Image.png
Description
The majority of the 52 photovoltaic installations at ASU are governed by power purchase agreements (PPA) that set a fixed per kilowatt-hour rate at which ASU buys power from the system owner over the period of 15-20 years. PPAs require accurate predictions of the system output to determine the financial

The majority of the 52 photovoltaic installations at ASU are governed by power purchase agreements (PPA) that set a fixed per kilowatt-hour rate at which ASU buys power from the system owner over the period of 15-20 years. PPAs require accurate predictions of the system output to determine the financial viability of the system installations as well as the purchase price. The research was conducted using PPAs and historical solar power production data from the ASU's Energy Information System (EIS). The results indicate that most PPAs slightly underestimate the annual energy yield. However, the modeled power output from PVsyst indicates that higher energy outputs are possible with better system monitoring.
ContributorsVulic, Natasa (Author) / Bowden, Stuart (Thesis director) / Bryan, Harvey (Committee member) / Sharma, Vivek (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2012-12
137820-Thumbnail Image.png
Description
The 21st century engineer will face a diverse set of challenges spread out along a broad spectrum of disciplines. Among others, the fields of energy, healthcare, cyberspace, virtual reality, and neuroscience require monumental efforts by the new generation of engineers to meet the demands of a growing society. However the

The 21st century engineer will face a diverse set of challenges spread out along a broad spectrum of disciplines. Among others, the fields of energy, healthcare, cyberspace, virtual reality, and neuroscience require monumental efforts by the new generation of engineers to meet the demands of a growing society. However the most important, and likely the most under recognized, challenge lies in developing advanced personalized learning. It is the core foundation from which the rest of the challenges can be accomplished. Without an effective method of teaching engineering students how to realize these grand challenges, the knowledge pool from which to draw new innovations and discoveries will be greatly diminished. This paper introduces the Inventors Workshop (IW), a hands-on, passion-based approach to personalized learning. It is intended to serve as a manual that will inform the next generation of student leaders and inventioneers about the core concepts the Inventors Workshop was built upon, and how to continue improvement into the future. Due to the inherent complexities in the grand challenge of personalized learning, the IW has developed a multifaceted solution that is difficult to explain in a single phrase. To enable comprehension of the IW's full vision, the process undergone to date of establishing and expanding the IW is described. In addition, research has been conducted to determine a variety of paths the Inventors Workshop may utilize in future expansion. Each of these options is explored and related to the core foundations of the IW to assist future leaders and partners in effectively improving personalized learning at ASU and beyond.
ContributorsEngelhoven, V. Logan (Author) / Burleson, Winslow (Thesis director) / Peck, Sidnee (Committee member) / Fortun, A. L. Cecil (Committee member) / Barrett, The Honors College (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2012-12
137835-Thumbnail Image.png
Description
Electrospun nanofibers can be prepared from various kinds of inorganic substances by electro-spinning techniques. They have great potential in many applications including super capacitors, lithium ion batteries, filtration, catalyst and enzyme carriers, and sensors [1]. The traditional way to produce electrospun nanofibers is needle based electro-spinning [1]. However, electrospun nanofibers

Electrospun nanofibers can be prepared from various kinds of inorganic substances by electro-spinning techniques. They have great potential in many applications including super capacitors, lithium ion batteries, filtration, catalyst and enzyme carriers, and sensors [1]. The traditional way to produce electrospun nanofibers is needle based electro-spinning [1]. However, electrospun nanofibers have not been widely used in practice because of low nanofiber production rates. One way to largely increase the electro-spinning productivity is needleless electro-spinning. In 2005, Jirsak et al. patented a rotating roller fiber generator for the mass production of nanofibers [2]. Elmarco Corporation commercialized this technique to manufacture nanofiber equipment for the production of all sorts of organic and inorganic nanofibers, and named it "NanospiderTM". For this project, my goal is to build a needleless electro-spinner to produce nanofibers as the separator of lithium ion batteries. The model of this project is based on the design of rotating roller fiber generator, and is adapted from a project at North Dakota State University in 2011 [3].
ContributorsQiao, Guanhao (Author) / Yu, Hongyu (Thesis director) / Jiang, Hanqing (Committee member) / Goryll, Michael (Committee member) / Barrett, The Honors College (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2012-12
131593-Thumbnail Image.png
Description
To successfully launch and maintain a long-term colony on Mars, Martian agricultural systems need to be capable of sustaining human life without requiring expensive deliveries from Earth. There is a need for more studies on this topic to make this a feasible mission. This thesis aims to study from a

To successfully launch and maintain a long-term colony on Mars, Martian agricultural systems need to be capable of sustaining human life without requiring expensive deliveries from Earth. There is a need for more studies on this topic to make this a feasible mission. This thesis aims to study from a high level one such agricultural system, specifically examining the requirements and flow of Nitrogen, Phosphorus and Potassium required to sustain a given human colony size. We developed a Microsoft Excel based model that relates human nutritional needs to the amount available in food crops and in turn the amount of Martian soil required for agriculture. The model works by inputting the number of humans, and then utilizing the built-in calculations and datasets to determine how much of each nutrient is needed to meet all nutritional needs of the colony. Using that information, it calculates the amount of plants needed to supply the nutrition and then calculates the amount of nutrients that would be taken from the soil. It compares the Martian regolith to the nutrient uptake, accounting for inedible biomass from the plants and human waste that can be added to the regolith. Any deficiencies are used to determine if and how much fertilizer should be added to the system initially and over time. Using the total amount of plants and the number of harvests, the amount of Martian land required for sustaining the colony is computed. These results can be used as a building block to enable the successful design of an agricultural system on Mars.
ContributorsGarland, Michael (Co-author) / Zinke, Sarah (Co-author) / Muenich, Rebecca (Thesis director) / Perreault, Francois (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131616-Thumbnail Image.png
Description
Agriculture is the second largest water consumer in the Phoenix Metropolitan region, after the municipal sector. A significant portion of the cultivated land and agricultural water demand is from the production of animal feed, including alfalfa (~69% of total cropland area), corn (~8), and sorghum (-3%), which are both exported

Agriculture is the second largest water consumer in the Phoenix Metropolitan region, after the municipal sector. A significant portion of the cultivated land and agricultural water demand is from the production of animal feed, including alfalfa (~69% of total cropland area), corn (~8), and sorghum (-3%), which are both exported and needed to support local dairy industry. The goal of this thesis is to evaluate the impacts on water demand and crop production of four different crop portfolios using alfalfa, corn, sorghum, and feed barley. For this aim, the Water Evaluation And Planning (WEAP) platform and the embedded MABIA agronomic module are applied to the Phoenix Active Management Area (AMA), a political/hydrological region including most of Phoenix Metro. The simulations indicate that the most efficient solution is a portfolio where all study crop production is made up by sorghum, with an increase of 153% in crop yield and a reduction of 60% of water consumption compared to current conditions. In contrast, a portfolio where all study crop production is made up by alfalfa, which is primary crop grown in current conditions, decreased crop yield by 77% and increases water demand by 105%. Solutions where all study crop production is achieved with corn or feed barley lead to a reduction of 77% and 65% of each respective water demand, with a portfolio of all corn for study crop production increasing crop yield by 245% and a portfolio of all feed barley for study crop production reducing crop yield by 29%.
ContributorsRees, Kendall Marcella (Author) / Mascaro, Giuseppe (Thesis director) / Muenich, Rebecca (Committee member) / Chhetri, Netra (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
161609-Thumbnail Image.png
Description
In recent decades animal agriculture in the U.S. has moved from small, distributed operations to large, Concentrated Animal Feeding Operations (CAFOs). CAFOs are defined by federal regulations based on animal numbers and confinement criteria. Because of the size of these operations, the excessive amount of manure generated is typically stored

In recent decades animal agriculture in the U.S. has moved from small, distributed operations to large, Concentrated Animal Feeding Operations (CAFOs). CAFOs are defined by federal regulations based on animal numbers and confinement criteria. Because of the size of these operations, the excessive amount of manure generated is typically stored in lagoons, pits, or barns prior to field application or transport to other farms. Water quality near CAFOs can be impaired through the overflow of lagoons, storm runoff, or lagoon seepage. Assessing water quality impacts of CAFOs in a modeling framework has been difficult because of data paucity. A CAFO lagoon module was developed to assess lagoon overflow risk, groundwater quality, and ammonia emissions of a dairy lagoon. A groundwater quality assessment of a Dairy Lagoon in Lynden Washington was used to calibrate and validate the groundwater quality model. Groundwater down stream of the lagoon was negatively impaired. The long-term effects of this lagoon on water quality were explored as well as the effectiveness of improving the lagoon lining to reduce seepage. This model can be used to improve understanding of the impacts of CAFO lagoon seepage and develop sustainable management practices at the watershed scale for these key components of the agricultural landscape.
ContributorsRudko, Noah (Author) / Muenich, Rebecca (Thesis advisor) / Garcia, Margaret (Committee member) / Xu, Tianfang (Committee member) / Arizona State University (Publisher)
Created2021