Matching Items (508)
Filtering by

Clear all filters

150620-Thumbnail Image.png
Description
Group III-nitride semiconductors have wide application in optoelectronic devices. Spontaneous and piezoelectric polarization effects have been found to be critical for electric and optical properties of group III-nitrides. In this dissertation, firstly, the crystal orientation dependence of the polarization is calculated and in-plane polarization is revealed. The in-plane polarization is

Group III-nitride semiconductors have wide application in optoelectronic devices. Spontaneous and piezoelectric polarization effects have been found to be critical for electric and optical properties of group III-nitrides. In this dissertation, firstly, the crystal orientation dependence of the polarization is calculated and in-plane polarization is revealed. The in-plane polarization is sensitive to the lateral characteristic dimension determined by the microstructure. Specific semi-polar plane growth is suggested for reducing quantum-confined Stark effect. The macroscopic electrostatic field from the polarization discontinuity in the heterostructures is discussed, b ased on that, the band diagram of InGaN/GaN quantum well/barrier and AlGaN/GaN heterojunction is obtained from the self-consistent solution of Schrodinger and Poisson equations. New device design such as triangular quantum well with the quenched polarization field is proposed. Electron holography in the transmission electron microscopy is used to examine the electrostatic potential under polarization effects. The measured potential energy profiles of heterostructure are compared with the band simulation, and evidences of two-dimensional hole gas (2DHG) in a wurtzite AlGaN/ AlN/ GaN superlattice, as well as quasi two-dimensional electron gas (2DEG) in a zinc-blende AlGaN/GaN are found. The large polarization discontinuity of AlN/GaN is the main source of the 2DHG of wurtzite nitrides, while the impurity introduced during the growth of AlGaN layer provides the donor states that to a great extent balance the free electrons in zinc-blende nitrides. It is also found that the quasi-2DEG concentration in zinc-blende AlGaN/GaN is about one order of magnitude lower than the wurtzite AlGaN/GaN, due to the absence of polarization. Finally, the InAlN/GaN lattice-matched epitaxy, which ideally has a zero piezoelectric polarization and strong spontaneous polarization, is experimentally studied. The breakdown in compositional homogeneity is triggered by threading dislocations with a screw component propagating from the GaN underlayer, which tend to open up into V-grooves at a certain thickness of the InxAl1-xN layer. The V-grooves coalesce at 200 nm and are filled with material that exhibits a significant drop in indium content and a broad luminescence peak. The structural breakdown is due to heterogeneous nucleation and growth at the facets of the V-grooves.
ContributorsWei, Qiyuan (Author) / Ponce, Fernando A. (Thesis advisor) / Tsen, Kong-Thon (Committee member) / Shumway, John (Committee member) / Menéndez, Jose (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2012
150491-Thumbnail Image.png
Description
We propose a novel solution to prevent cancer by developing a prophylactic cancer. Several sources of antigens for cancer vaccines have been published. Among these, antigens that contain a frame-shift (FS) peptide or viral peptide are quite attractive for a variety of reasons. FS sequences, from either mistake in RNA

We propose a novel solution to prevent cancer by developing a prophylactic cancer. Several sources of antigens for cancer vaccines have been published. Among these, antigens that contain a frame-shift (FS) peptide or viral peptide are quite attractive for a variety of reasons. FS sequences, from either mistake in RNA processing or in genomic DNA, may lead to generation of neo-peptides that are foreign to the immune system. Viral peptides presumably would originate from exogenous but integrated viral nucleic acid sequences. Both are non-self, therefore lessen concerns about development of autoimmunity. I have developed a bioinformatical approach to identify these aberrant transcripts in the cancer transcriptome. Their suitability for use in a vaccine is evaluated by establishing their frequencies and predicting possible epitopes along with their population coverage according to the prevalence of major histocompatibility complex (MHC) types. Viral transcripts and transcripts with FS mutations from gene fusion, insertion/deletion at coding microsatellite DNA, and alternative splicing were identified in NCBI Expressed Sequence Tag (EST) database. 48 FS chimeric transcripts were validated in 50 breast cell lines and 68 primary breast tumor samples with their frequencies from 4% to 98% by RT-PCR and sequencing confirmation. These 48 FS peptides, if translated and presented, could be used to protect more than 90% of the population in Northern America based on the prediction of epitopes derived from them. Furthermore, we synthesized 150 peptides that correspond to FS and viral peptides that we predicted would exist in tumor patients and we tested over 200 different cancer patient sera. We found a number of serological reactive peptide sequences in cancer patients that had little to no reactivity in healthy controls; strong support for the strength of our bioinformatic approach. This study describes a process used to identify aberrant transcripts that lead to a new source of antigens that can be tested and used in a prophylactic cancer vaccine. The vast amount of transcriptome data of various cancers from the Cancer Genome Atlas (TCGA) project will enhance our ability to further select better cancer antigen candidates.
ContributorsLee, HoJoon (Author) / Johnston, Stephen A. (Thesis advisor) / Kumar, Sudhir (Committee member) / Miller, Laurence (Committee member) / Stafford, Phillip (Committee member) / Sykes, Kathryn (Committee member) / Arizona State University (Publisher)
Created2012
151234-Thumbnail Image.png
Description
Immunosignaturing is a technology that allows the humoral immune response to be observed through the binding of antibodies to random sequence peptides. The immunosignaturing microarray is based on complex mixtures of antibodies binding to arrays of random sequence peptides in a multiplexed fashion. There are computational and statistical challenges to

Immunosignaturing is a technology that allows the humoral immune response to be observed through the binding of antibodies to random sequence peptides. The immunosignaturing microarray is based on complex mixtures of antibodies binding to arrays of random sequence peptides in a multiplexed fashion. There are computational and statistical challenges to the analysis of immunosignaturing data. The overall aim of my dissertation is to develop novel computational and statistical methods for immunosignaturing data to access its potential for diagnostics and drug discovery. Firstly, I discovered that a classification algorithm Naive Bayes which leverages the biological independence of the probes on our array in such a way as to gather more information outperforms other classification algorithms due to speed and accuracy. Secondly, using this classifier, I then tested the specificity and sensitivity of immunosignaturing platform for its ability to resolve four different diseases (pancreatic cancer, pancreatitis, type 2 diabetes and panIN) that target the same organ (pancreas). These diseases were separated with >90% specificity from controls and from each other. Thirdly, I observed that the immunosignature of type 2 diabetes and cardiovascular complications are unique, consistent, and reproducible and can be separated by 100% accuracy from controls. But when these two complications arise in the same person, the resultant immunosignature is quite different in that of individuals with only one disease. I developed a method to trace back from informative random peptides in disease signatures to the potential antigen(s). Hence, I built a decipher system to trace random peptides in type 1 diabetes immunosignature to known antigens. Immunosignaturing, unlike the ELISA, has the ability to not only detect the presence of response but also absence of response during a disease. I observed, not only higher but also lower peptides intensities can be mapped to antigens in type 1 diabetes. To study immunosignaturing potential for population diagnostics, I studied effect of age, gender and geographical location on immunosignaturing data. For its potential to be a health monitoring technology, I proposed a single metric Coefficient of Variation that has shown potential to change significantly when a person enters a disease state.
ContributorsKukreja, Muskan (Author) / Johnston, Stephen Albert (Thesis advisor) / Stafford, Phillip (Committee member) / Dinu, Valentin (Committee member) / Arizona State University (Publisher)
Created2012
151238-Thumbnail Image.png
Description
Recently a new materials platform consisting of semiconductors grown on GaSb and InAs substrates with lattice constants close to 6.1 A was proposed by our group for various electronic and optoelectronic applications. This materials platform consists of both II-VI (MgZnCdHg)(SeTe) and III-V (InGaAl)(AsSb) compound semiconductors, which have direct bandgaps spanning

Recently a new materials platform consisting of semiconductors grown on GaSb and InAs substrates with lattice constants close to 6.1 A was proposed by our group for various electronic and optoelectronic applications. This materials platform consists of both II-VI (MgZnCdHg)(SeTe) and III-V (InGaAl)(AsSb) compound semiconductors, which have direct bandgaps spanning the entire energy spectrum from far-IR (~0 eV) up to UV (~3.4 eV). The broad range of bandgaps and material properties make it very attractive for a wide range of applications in optoelectronics, such as solar cells, laser diodes, light emitting diodes, and photodetectors. Moreover, this novel materials system potentially offers unlimited degrees of freedom for integration of electronic and optoelectronic devices onto a single substrate while keeping the best possible materials quality with very low densities of misfit dislocations. This capability is not achievable with any other known lattice-matched semiconductors on any available substrate. In the 6.1-A materials system, the semiconductors ZnTe and GaSb are almost perfectly lattice-matched with a lattice mismatch of only 0.13%. Correspondingly, it is expected that high quality ZnTe/GaSb and GaSb/ZnTe heterostructures can be achieved with very few dislocations generated during growth. To fulfill the task, their MBE growth and material properties are carefully investigated. High quality ZnTe layers grown on various III-V substrates and GaSb grown on ZnTe are successfully achieved using MBE. It is also noticed that ZnTe and GaSb have a type-I band-edge alignment with large band offsets (delta_Ec=0.934 eV, delta_Ev=0.6 eV), which provides strong confinement for both electrons and holes. Furthermore, a large difference in refractive index is found between ZnTe and GaSb (2.7 and 3.9, respectively, at 0.7 eV), leading to excellent optical confinement of the guided optical modes in planar semiconductor lasers or distributed Bragg reflectors (DBR) for vertical-cavity surface-emitting lasers. Therefore, GaSb/ZnTe double-heterostructure and ZnTe/GaSb DBR structure are suitable for use in light emitting devices. In this thesis work, experimental demonstration of these structures with excellent structural and optical properties is reported. During the exploration on the properties of various ZnTe heterostructures, it is found that residual tensile strains exist in the thick ZnTe epilayers when they are grown on GaAs, InP, InAs and GaSb substrates. The presence of tensile strains is due to the difference in thermal expansion coefficients between the epilayers and the substrates. The defect densities in these ZnTe layers become lower as the ZnTe layer thickness increases. Growth of high quality GaSb on ZnTe can be achieved using a temperature ramp during growth. The influence of temperature ramps with different ramping rates in the optical properties of GaSb layer is studied, and the samples grown with a temperature ramp from 360 to 470 C at a rate of 33 C/min show the narrowest bound exciton emission peak with a full width at half maximum of 15 meV. ZnTe/GaSb DBR structures show excellent reflectivity properties in the mid-infrared range. A peak reflectance of 99% with a wide stopband of 480 nm centered at 2.5 um is measured from a ZnTe/GaSb DBR sample of only 7 quarter-wavelength pairs.
ContributorsFan, Jin (Author) / Zhang, Yong-Hang (Thesis advisor) / Smith, David (Committee member) / Yu, Hongbin (Committee member) / Menéndez, Jose (Committee member) / Johnson, Shane (Committee member) / Arizona State University (Publisher)
Created2012
151249-Thumbnail Image.png
Description
As world energy demands increase, research into more efficient energy production methods has become imperative. Heterogeneous catalysis and nanoscience are used to promote chemical transformations important for energy production. These concepts are important in solid oxide fuel cells (SOFCs) which have attracted attention because of their potential to provide an

As world energy demands increase, research into more efficient energy production methods has become imperative. Heterogeneous catalysis and nanoscience are used to promote chemical transformations important for energy production. These concepts are important in solid oxide fuel cells (SOFCs) which have attracted attention because of their potential to provide an efficient and environmentally favorable power generation system. The SOFC is also fuel-flexible with the ability to run directly on many fuels other than hydrogen. Internal fuel reforming directly in the anode of the SOFC would greatly reduce the cost and complexity of the device. Methane is the simplest hydrocarbon and a main component in natural gas, making it useful when testing catalysts on the laboratory scale. Nickel (Ni) and gadolinium (Gd) doped ceria (CeO2) catalysts for potential use in the SOFC anode were synthesized with a spray drying method and tested for catalytic performance using partial oxidation of methane and steam reforming. The relationships between catalytic performance and structure were then investigated using X-ray diffraction, transmission electron microscopy, and environmental transmission electron microscopy. The possibility of solid solutions, segregated phases, and surface layers of Ni were explored. Results for a 10 at.% Ni in CeO2 catalyst reveal a poor catalytic behavior while a 20 at.% Ni in CeO2 catalyst is shown to have superior activity. The inclusion of both 10 at.% Gd and 10 at.% Ni in CeO2 enhances the catalytic performance. Analysis of the presence of Ni in all 3 samples reveals Ni heterogeneity and little evidence for extensive solid solution doping. Ni is found in small domains throughout CeO2 particles. In the 20 at.% Ni sample a segregated, catalytically active NiO phase is observed. Overall, it is found that significant interaction between Ni and CeO2 occurs that could affect the synthesis and functionality of the SOFC anode.
ContributorsCavendish, Rio (Author) / Crozier, Peter (Thesis advisor) / Adams, James (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2012
151155-Thumbnail Image.png
Description
In this dissertation, in-situ X-ray and ultraviolet photoemission spectroscopy have been employed to study the interface chemistry and electronic structure of potential high-k gate stack materials. In these gate stack materials, HfO2 and La2O3 are selected as high-k dielectrics, VO2 and ZnO serve as potential channel layer materials. The gate

In this dissertation, in-situ X-ray and ultraviolet photoemission spectroscopy have been employed to study the interface chemistry and electronic structure of potential high-k gate stack materials. In these gate stack materials, HfO2 and La2O3 are selected as high-k dielectrics, VO2 and ZnO serve as potential channel layer materials. The gate stack structures have been prepared using a reactive electron beam system and a plasma enhanced atomic layer deposition system. Three interrelated issues represent the central themes of the research: 1) the interface band alignment, 2) candidate high-k materials, and 3) band bending, internal electric fields, and charge transfer. 1) The most highlighted issue is the band alignment of specific high-k structures. Band alignment relationships were deduced by analysis of XPS and UPS spectra for three different structures: a) HfO2/VO2/SiO2/Si, b) HfO2-La2O3/ZnO/SiO2/Si, and c) HfO2/VO2/ HfO2/SiO2/Si. The valence band offset of HfO2/VO2, ZnO/SiO2 and HfO2/SiO2 are determined to be 3.4 ± 0.1, 1.5 ± 0.1, and 0.7 ± 0.1 eV. The valence band offset between HfO2-La2O3 and ZnO was almost negligible. Two band alignment models, the electron affinity model and the charge neutrality level model, are discussed. The results show the charge neutrality model is preferred to describe these structures. 2) High-k candidate materials were studied through comparison of pure Hf oxide, pure La oxide, and alloyed Hf-La oxide films. An issue with the application of pure HfO2 is crystallization which may increase the leakage current in gate stack structures. An issue with the application of pure La2O3 is the presence of carbon contamination in the film. Our study shows that the alloyed Hf-La oxide films exhibit an amorphous structure along with reduced carbon contamination. 3) Band bending and internal electric fields in the gate stack structure were observed by XPS and UPS and indicate the charge transfer during the growth and process. The oxygen plasma may induce excess oxygen species with negative charges, which could be removed by He plasma treatment. The final HfO2 capping layer deposition may reduce the internal potential inside the structures. The band structure was approaching to a flat band condition.
ContributorsZhu, Chiyu (Author) / Nemanich, Robert (Thesis advisor) / Chamberlin, Ralph (Committee member) / Chen, Tingyong (Committee member) / Ponce, Fernando (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2012
148189-Thumbnail Image.png
Description

This study was conducted to determine the difference in compressive strength between decayed and healthy teeth. The teeth were subjected to a compressive force to simulate the process of mastication. This was done to show that healthy teeth would be better at handling these compressive forces since they have more

This study was conducted to determine the difference in compressive strength between decayed and healthy teeth. The teeth were subjected to a compressive force to simulate the process of mastication. This was done to show that healthy teeth would be better at handling these compressive forces since they have more enamel. 26 teeth samples were collected (19 molars, 4 canines, and 3 premolars) evenly distributed between healthy and decayed. The samples were dimensionally analyzed using electronic calipers and then categorized as either decayed or healthy. The samples were then placed in a nut bolt with epoxy so that the samples could be compressed. Each sample was recorded on video while they were being exposed to the compressive force. This was done to observe how the samples were coming in contact with the Shimadzu compression machine. The amount of force that was required for the samples to exhibit the first point of breakage was recorded by the machine in pounds of force. Various analyses were conducted to determine relationships between several variables. The results showed that as the total and occlusal surface area increased, so did the amount of force the samples could absorb before breakage. As the machine came in contact with more cusps among the molar samples, those samples were able to absorb a larger compressive force. The average force that the decayed and healthy molar samples endured before breakage was roughly even, with the decayed samples average being slightly greater.

ContributorsHenscheid, Keaton J (Author) / Quaranta, Kimberly (Thesis director) / Peoples, Samuel (Committee member) / College of Health Solutions (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148321-Thumbnail Image.png
Description

This study examines the effectiveness of two modes of exercise on inhibitory control in adults with Down Syndrome (DS). Thirteen participants attended four sessions: a baseline assessment, an Assisted Cycling Therapy (ACT) session, a Resistance Training (RT) session, and a session of No Training (NT). In the baseline assessment, 1-repetition

This study examines the effectiveness of two modes of exercise on inhibitory control in adults with Down Syndrome (DS). Thirteen participants attended four sessions: a baseline assessment, an Assisted Cycling Therapy (ACT) session, a Resistance Training (RT) session, and a session of No Training (NT). In the baseline assessment, 1-repetition max (1RM) measurements and voluntary pedal rate measurements were taken. In the resistance training session, the leg press, chest press, seated row, leg curl, shoulder press, and latissimus pulldown were performed. In the cycling intervention, the participant completed 30 minutes of cycling. The Erikson Flanker task was administered prior to each session (i.e., pretest) and after the intervention (i.e., post-test). The results were somewhat consistent with the hypothesis that inhibition time improved more following RT and ACT than NT. there was also a significant difference between ACT and NT. Additionally, it was hypothesized that all measures would improve following each acute exercise intervention, but the most significant improvements were seen following ACT. In conclusion, an acute session of ACT demonstrated a significant trend towards improvements in inhibitory control in adults with DS which we interpreted using a model of neural changes.

ContributorsHayes, Claire (Author) / Ringenbach, Shannon (Thesis director) / Arnold, Nate (Committee member) / Rand, Miya (Committee member) / Edson College of Nursing and Health Innovation (Contributor) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148324-Thumbnail Image.png
Description

The various health benefits of vinegar ingestion have been studied extensively in the<br/>literature. Moreover, emerging research suggests vinegar may also have an effect on mental<br/>health. Beneficial effects of certain diets on mood have been reported, however, the mechanisms<br/>are unknown. The current study aimed to determine if vinegar ingestion positively affects

The various health benefits of vinegar ingestion have been studied extensively in the<br/>literature. Moreover, emerging research suggests vinegar may also have an effect on mental<br/>health. Beneficial effects of certain diets on mood have been reported, however, the mechanisms<br/>are unknown. The current study aimed to determine if vinegar ingestion positively affects mood<br/>state in healthy young adults. This was a randomized, single blinded controlled trial consisting of<br/>25 subjects. Participants were randomly assigned to either the vinegar group (consumed 2<br/>tablespoons of liquid vinegar diluted in one cup water twice daily with meals) or the control<br/>group (consumed one vinegar pill daily with a meal), and the intervention lasted 4 weeks.<br/>Subjects completed mood questionnaires pre- and post-intervention. Results showed a significant<br/>improvement in CES-D and POMS-Depression scores for the vinegar group compared to the<br/>control. This study suggests that vinegar ingestion may improve depressive symptoms in healthy<br/>young adults.

ContributorsWilliams, Susanna (Author) / Johnston, Carol (Thesis director) / Whisner, Corrie (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136566-Thumbnail Image.png
Description
Lung cancer is the leading cause of cancer-related deaths in the US. Low-dose computed tomography (LDCT) scans are speculated to reduce lung cancer mortality. However LDCT scans impose multiple risks including false-negative results, false- positive results, overdiagnosis, and cancer due to repeated exposure to radiation. Immunosignaturing is a new method

Lung cancer is the leading cause of cancer-related deaths in the US. Low-dose computed tomography (LDCT) scans are speculated to reduce lung cancer mortality. However LDCT scans impose multiple risks including false-negative results, false- positive results, overdiagnosis, and cancer due to repeated exposure to radiation. Immunosignaturing is a new method proposed to screen and detect lung cancer, eliminating the risks associated with LDCT scans. Known and blinded primary blood sera from participants with lung cancer and no cancer were run on peptide microarrays and analyzed. Immunosignatures for each known sample collectively indicated 120 peptides unique to lung cancer and non-cancer participants. These 120 peptides were used to determine the status of the blinded samples. Verification of the results from Vanderbilt is pending.
ContributorsNguyen, Geneva Trieu (Author) / Woodbury, Neal (Thesis director) / Zhao, Zhan-Gong (Committee member) / Stafford, Phillip (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Department of Psychology (Contributor)
Created2015-05