Matching Items (433)
Filtering by

Clear all filters

141491-Thumbnail Image.png
Description

Background: Children with autism have often been reported to have gastrointestinal problems that are more frequent and more severe than in children from the general population.

Methods: Gastrointestinal flora and gastrointestinal status were assessed from stool samples of 58 children with Autism Spectrum Disorders (ASD) and 39 healthy typical children of similar ages.

Background: Children with autism have often been reported to have gastrointestinal problems that are more frequent and more severe than in children from the general population.

Methods: Gastrointestinal flora and gastrointestinal status were assessed from stool samples of 58 children with Autism Spectrum Disorders (ASD) and 39 healthy typical children of similar ages. Stool testing included bacterial and yeast culture tests, lysozyme, lactoferrin, secretory IgA, elastase, digestion markers, short chain fatty acids (SCFA's), pH, and blood presence. Gastrointestinal symptoms were assessed with a modified six-item GI Severity Index (6-GSI) questionnaire, and autistic symptoms were assessed with the Autism Treatment Evaluation Checklist (ATEC).

Results: Gastrointestinal symptoms (assessed by the 6-GSI) were strongly correlated with the severity of autism (assessed by the ATEC), (r = 0.59, p < 0.001). Children with 6-GSI scores above 3 had much higher ATEC Total scores than those with 6-GSI-scores of 3 or lower (81.5 +/- 28 vs. 49.0 +/- 21, p = 0.00002).
Children with autism had much lower levels of total short chain fatty acids (-27%, p = 0.00002), including lower levels of acetate, proprionate, and valerate; this difference was greater in the children with autism taking probiotics, but also significant in those not taking probiotics. Children with autism had lower levels of species of Bifidobacter (-43%, p = 0.002) and higher levels of species of Lactobacillus (+100%, p = 0.00002), but similar levels of other bacteria and yeast using standard culture growth-based techniques. Lysozyme was somewhat lower in children with autism (-27%, p = 0.04), possibly associated with probiotic usage. Other markers of digestive function were similar in both groups.

Conclusions: The strong correlation of gastrointestinal symptoms with autism severity indicates that children with more severe autism are likely to have more severe gastrointestinal symptoms and vice versa. It is possible that autism symptoms are exacerbated or even partially due to the underlying gastrointestinal problems. The low level of SCFA's was partly associated with increased probiotic use, and probably partly due to either lower production (less sacchrolytic fermentation by beneficial bacteria and/or lower intake of soluble fiber) and/or greater absorption into the body (due to longer transit time and/or increased gut permeability).

ContributorsAdams, James (Author) / Johansen, Leah (Author) / Powell, Linda (Author) / Quig, David (Author) / Rubin, Robert A. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2011-03-16
141495-Thumbnail Image.png
Description

The electronic structure of eight zinc-centered porphyrin macrocyclic molecules are investigated using density functional theory for ground-state properties, time-dependent density functional theory (TDDFT) for excited states, and Franck-Condon (FC) analysis for further characterization of the UV-vis spectrum. Symmetry breaking was utilized to find the lowest energy of the excited states

The electronic structure of eight zinc-centered porphyrin macrocyclic molecules are investigated using density functional theory for ground-state properties, time-dependent density functional theory (TDDFT) for excited states, and Franck-Condon (FC) analysis for further characterization of the UV-vis spectrum. Symmetry breaking was utilized to find the lowest energy of the excited states for many states in the spectra. To confirm the theoretical modeling, the spectroscopic result from zinc phthalocyanine (ZnPc) is used to compare to the TDDFT and FC result. After confirmation of the modeling, five more planar molecules are investigated: zinc tetrabenzoporphyrin (ZnTBP), zinc tetrabenzomonoazaporphyrin (ZnTBMAP), zinc tetrabenzocisdiazaporphyrin (ZnTBcisDAP), zinc tetrabenzotransdiazaporphyrin (ZnTBtransDAP), and zinc tetrabenzotriazaporphyrin (ZnTBTrAP). The two latter molecules are then compared to their phenylated sister molecules: zinc monophenyltetrabenzotriazaporphyrin (ZnMPTBTrAP) and zinc diphenyltetrabenzotransdiazaporphyrin (ZnDPTBtransDAP). The spectroscopic results from the synthesis of ZnMPTBTrAP and ZnDPTBtransDAP are then compared to their theoretical models and non-phenylated pairs. While the Franck-Condon results were not as illuminating for every B-band, the Q-band results were successful in all eight molecules, with a considerable amount of spectral analysis in the range of interest between 300 and 750 nm. The π-π* transitions are evident in the results for all of the Q bands, while satellite vibrations are also visible in the spectra. In particular, this investigation finds that, while ZnPc has a D4h symmetry at ground state, a C4v symmetry is predicted in the excited-state Q band region. The theoretical results for ZnPc found an excitation energy at the Q-band 0-0 transition of 1.88 eV in vacuum, which is in remarkable agreement with published gas-phase spectroscopy, as well as our own results of ZnPc in solution with Tetrahydrofuran that are provided in this paper.

ContributorsTheisen, Rebekah (Author) / Huang, Liang (Author) / Fleetham, Tyler (Author) / Adams, James (Author) / Li, Jian (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-03-07
141208-Thumbnail Image.png
Description
Studies on urban heat island (UHI) have been more than a century after the phenomenon was first discovered in the early 1800s. UHI emerges as the source of many urban environmental problems and exacerbates the living environment in cities. Under the challenges of increasing urbanization and future climate changes, there

Studies on urban heat island (UHI) have been more than a century after the phenomenon was first discovered in the early 1800s. UHI emerges as the source of many urban environmental problems and exacerbates the living environment in cities. Under the challenges of increasing urbanization and future climate changes, there is a pressing need for sustainable adaptation/mitigation strategies for UHI effects, one popular option being the use of reflective materials. While it is introduced as one effective method to reduce temperature and energy consumption in cities, its impacts on multi-dimensional environmental sustainability and large-scale non-local effect are inadequately explored. This paper provides a synthetic overview of potential environmental impacts of reflective materials at a variety of scales, ranging from energy load on a single building to regional hydroclimate. The review shows that mitigation potential of reflective materials depends on a portfolio of factors, including building characteristics, urban environment, meteorological and geographical conditions, to name a few. Precaution needs to be exercised by city planners and policy makers for large-scale deployment of reflective materials before their environmental impacts, especially on regional hydroclimates, are better understood. In general, it is recommended that optimal strategy for UHI needs to be determined on a city-by-city basis, rather than adopting a “one-solution-fits-all” strategy.
ContributorsYang, Jiachuan (Contributor) / Wang, Zhi-Hua (Correspondent) / Kaloush, Kamil (Contributor)
Created2015-06-11