Matching Items (109)
Filtering by

Clear all filters

129459-Thumbnail Image.png
Description

Background: The cytokine MIF (Macrophage Migration Inhibitory Factor) has diverse physiological roles and is present at elevated concentrations in numerous disease states. However, its molecular heterogeneity has not been previously investigated in biological samples. Mass Spectrometric Immunoassay (MSIA) may help elucidate MIF post-translational modifications existing in vivo and provide additional clarity

Background: The cytokine MIF (Macrophage Migration Inhibitory Factor) has diverse physiological roles and is present at elevated concentrations in numerous disease states. However, its molecular heterogeneity has not been previously investigated in biological samples. Mass Spectrometric Immunoassay (MSIA) may help elucidate MIF post-translational modifications existing in vivo and provide additional clarity regarding its relationship to diverse pathologies.

Results: In this work, we have developed and validated a fully quantitative MSIA assay for MIF, and used it in the discovery and quantification of different proteoforms of MIF in serum samples, including cysteinylated and glycated MIF. The MSIA assay had a linear range of 1.56-50 ng/mL, and exhibited good precision, linearity, and recovery characteristics. The new assay was applied to a small cohort of human serum samples, and benchmarked against an MIF ELISA assay.

Conclusions: The quantitative MIF MSIA assay provides a sensitive, precise and high throughput method to delineate and quantify MIF proteoforms in biological samples.

ContributorsSherma, Nisha (Author) / Borges, Chad (Author) / Trenchevska, Olgica (Author) / Jarvis, Jason W. (Author) / Rehder, Douglas (Author) / Oran, Paul (Author) / Nelson, Randall (Author) / Nedelkov, Dobrin (Author) / Biodesign Institute (Contributor)
Created2014-10-14
129098-Thumbnail Image.png
Description

Background: HDL carries a rich protein cargo and examining HDL protein composition promises to improve our understanding of its functions. Conventional mass spectrometry methods can be lengthy and difficult to extend to large populations. In addition, without prior enrichment of the sample, the ability of these methods to detect low abundance

Background: HDL carries a rich protein cargo and examining HDL protein composition promises to improve our understanding of its functions. Conventional mass spectrometry methods can be lengthy and difficult to extend to large populations. In addition, without prior enrichment of the sample, the ability of these methods to detect low abundance proteins is limited. Our objective was to develop a high-throughput approach to examine HDL protein composition applicable to diabetes and cardiovascular disease (CVD).

Methods: We optimized two multiplexed assays to examine HDL proteins using a quantitative immunoassay (Multi-Analyte Profiling- MAP) and mass spectrometric-based quantitative proteomics (Multiple Reaction Monitoring-MRM). We screened HDL proteins using human xMAP (90 protein panel) and MRM (56 protein panel). We extended the application of these two methods to HDL isolated from a group of participants with diabetes and prior cardiovascular events and a group of non-diabetic controls.

Results: We were able to quantitate 69 HDL proteins using MAP and 32 proteins using MRM. For several common proteins, the use of MRM and MAP was highly correlated (p < 0.01). Using MAP, several low abundance proteins implicated in atherosclerosis and inflammation were found on HDL. On the other hand, MRM allowed the examination of several HDL proteins not available by MAP.

Conclusions: MAP and MRM offer a sensitive and high-throughput approach to examine changes in HDL proteins in diabetes and CVD. This approach can be used to measure the presented HDL proteins in large clinical studies.

ContributorsYassine, Hussein N. (Author) / Jackson, Angela M. (Author) / Borges, Chad (Author) / Billheimer, Dean (Author) / Koh, Hyunwook (Author) / Smith, Derek (Author) / Reaven, Peter (Author) / Lau, Serrine S. (Author) / Borchers, Christoph H. (Author) / Biodesign Institute (Contributor)
Created2014-01-08
154021-Thumbnail Image.png
Description
The development of high efficiency III-V solar cells is needed to meet the demands of a promising renewable energy source. Intermediate band solar cells (IBSCs) using semiconductor quantum dots (QDs) have been proposed to exceed the Shockley-Queisser efficiency limit [1]. The introduction of an IB in the forbidden gap of

The development of high efficiency III-V solar cells is needed to meet the demands of a promising renewable energy source. Intermediate band solar cells (IBSCs) using semiconductor quantum dots (QDs) have been proposed to exceed the Shockley-Queisser efficiency limit [1]. The introduction of an IB in the forbidden gap of host material generates two additional carrier transitions for sub-bandgap photon absorption, leading to increased photocurrent of IBSCs while simultaneously allowing an open-circuit voltage of the highest band gap. To realize a high efficiency IBSC, QD structures should have high crystal quality and optimized electronic properties. This dissertation focuses on the investigation and optimization of the structural and optical properties of InAs/GaAsSb QDs and the development of InAs/GaAsSb QD-based IBSCs.

In the present dissertation, the interband optical transition and carrier lifetime of InAs/GaAsSb QDs with different silicon delta-doping densities have been first studied by time-integrated and time-resolved photoluminescence (PL). It is found that an optimized silicon delta-doping density in the QDs enables to fill the QD electronic states with electrons for sub-bandgap photon absorption and to improve carrier lifetime of the QDs.

After that, the crystal quality and QD morphology of single- and multi-stack InAs/GaAsSb QDs with different Sb compositions have been investigated by transmission electron microscopy (TEM) and x-ray diffraction (XRD). The TEM studies reveal that QD morphology of single-stack QDs is affected by Sb composition due to strain reducing effect of Sb incorporation. The XRD studies confirm that the increase of Sb composition increases the lattice mismatch between GaAs matrix and GaAsSb spacers, resulting in increase of the strain relaxation in GaAsSb of the multi-stack QDs. Furthermore, the increase of Sb composition causes a PL redshift and increases carrier lifetime of QDs.

Finally, the spacer layer thickness of multi-stack InAs/GaAsSb QDs is optimized for the growth of InAs/GaAsSb QD solar cells (QDSCs). The InAs/GaAsSb QDSCs with GaP strain compensating layer are grown and their device performances are characterized. The increase of GaP coverage is beneficial to improve the conversion efficiency of the QDSCs. However, the conversion efficiency is reduced when using a relatively large GaP coverage.
ContributorsKim, Yeongho (Author) / Honsberg, Christiana (Thesis advisor) / Goodnick, Stephen (Committee member) / Faleev, Nikolai (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2015
155731-Thumbnail Image.png
Description
Urbanization and woody plant encroachment, with subsequent brush management, are two significant land cover changes that are represented in the southwestern United States. Urban areas continue to grow, and rangelands are undergoing vegetation conversions, either purposely through various rangeland management techniques, or by accident, through inadvertent effects of climate and

Urbanization and woody plant encroachment, with subsequent brush management, are two significant land cover changes that are represented in the southwestern United States. Urban areas continue to grow, and rangelands are undergoing vegetation conversions, either purposely through various rangeland management techniques, or by accident, through inadvertent effects of climate and management. This thesis investigates how areas undergoing land cover conversions in a semiarid region, through urbanization or rangeland management, influences energy, water and carbon fluxes. Specifically, the following scientific questions are addressed: (1) what is the impact of different urban land cover types in Phoenix, AZ on energy and water fluxes?, (2) how does the land cover heterogeneity influence energy, water, and carbon fluxes in a semiarid rangeland undergoing woody plant encroachment?, and (3) what is the impact of brush management on energy, water, and carbon fluxes?

The eddy covariance technique is well established to measure energy, water, and carbon fluxes and is used to quantify and compare flux measurements over different land surfaces. Results reveal that in an urban setting, paved surfaces exhibit the largest sensible and lowest latent heat fluxes in an urban environment, while a mesic landscape exhibits the largest latent heat fluxes, due to heavy irrigation. Irrigation impacts flux sensitivity to precipitation input, where latent heat fluxes increase with precipitation in xeric and parking lot landscapes, but do not impact the mesic system. In a semiarid managed rangeland, past management strategies and disturbance histories impact vegetation distribution, particularly the distribution of mesquite trees. At the site with less mesquite coverage, evapotranspiration (ET) is greater, due to greater grass cover. Both sites are generally net sinks of CO2, which is largely dependent on moisture availability, while the site with greater mesquite coverage has more respiration and generally greater gross ecosystem production (GEP). Initial impacts of brush management reveal ET and GEP decrease, due to the absence of mesquite trees. However the impact appears to be minimal by the end of the productive season. Overall, this dissertation advances the understanding of land cover change impacts on surface energy, water, and carbon fluxes in semiarid ecosystems.
ContributorsTempleton, Nicole Pierini (Author) / Vivoni, Enrique R (Thesis advisor) / Archer, Steven R (Committee member) / Mascaro, Giuseppe (Committee member) / Scott, Russell L. (Committee member) / Wang, Zhi-Hua (Committee member) / Arizona State University (Publisher)
Created2017
128800-Thumbnail Image.png
Description

Insulin-like growth factor 1 (IGF1) is an important biomarker for the management of growth hormone disorders. Recently there has been rising interest in deploying mass spectrometric (MS) methods of detection for measuring IGF1. However, widespread clinical adoption of any MS-based IGF1 assay will require increased throughput and speed to justify

Insulin-like growth factor 1 (IGF1) is an important biomarker for the management of growth hormone disorders. Recently there has been rising interest in deploying mass spectrometric (MS) methods of detection for measuring IGF1. However, widespread clinical adoption of any MS-based IGF1 assay will require increased throughput and speed to justify the costs of analyses, and robust industrial platforms that are reproducible across laboratories. Presented here is an MS-based quantitative IGF1 assay with performance rating of >1,000 samples/day, and a capability of quantifying IGF1 point mutations and posttranslational modifications. The throughput of the IGF1 mass spectrometric immunoassay (MSIA) benefited from a simplified sample preparation step, IGF1 immunocapture in a tip format, and high-throughput MALDI-TOF MS analysis. The Limit of Detection and Limit of Quantification of the resulting assay were 1.5 μg/L and 5 μg/L, respectively, with intra- and inter-assay precision CVs of less than 10%, and good linearity and recovery characteristics. The IGF1 MSIA was benchmarked against commercially available IGF1 ELISA via Bland-Altman method comparison test, resulting in a slight positive bias of 16%. The IGF1 MSIA was employed in an optimized parallel workflow utilizing two pipetting robots and MALDI-TOF-MS instruments synced into one-hour phases of sample preparation, extraction and MSIA pipette tip elution, MS data collection, and data processing. Using this workflow, high-throughput IGF1 quantification of 1,054 human samples was achieved in approximately 9 hours. This rate of assaying is a significant improvement over existing MS-based IGF1 assays, and is on par with that of the enzyme-based immunoassays. Furthermore, a mutation was detected in ∼1% of the samples (SNP: rs17884626, creating an A→T substitution at position 67 of the IGF1), demonstrating the capability of IGF1 MSIA to detect point mutations and posttranslational modifications.

ContributorsOran, Paul (Author) / Trenchevska, Olgica (Author) / Nedelkov, Dobrin (Author) / Borges, Chad (Author) / Schaab, Matthew (Author) / Rehder, Douglas (Author) / Jarvis, Jason (Author) / Sherma, Nisha (Author) / Shen, Luhui (Author) / Krastins, Bryan (Author) / Lopez, Mary F. (Author) / Schwenke, Dawn (Author) / Reaven, Peter D. (Author) / Nelson, Randall (Author) / Biodesign Institute (Contributor)
Created2014-03-24
128816-Thumbnail Image.png
Description

To address the need to study frozen clinical specimens using next-generation RNA, DNA, chromatin immunoprecipitation (ChIP) sequencing and protein analyses, we developed a biobank work flow to prospectively collect biospecimens from patients with renal cell carcinoma (RCC). We describe our standard operating procedures and work flow to annotate pathologic results

To address the need to study frozen clinical specimens using next-generation RNA, DNA, chromatin immunoprecipitation (ChIP) sequencing and protein analyses, we developed a biobank work flow to prospectively collect biospecimens from patients with renal cell carcinoma (RCC). We describe our standard operating procedures and work flow to annotate pathologic results and clinical outcomes. We report quality control outcomes and nucleic acid yields of our RCC submissions (N=16) to The Cancer Genome Atlas (TCGA) project, as well as newer discovery platforms, by describing mass spectrometry analysis of albumin oxidation in plasma and 6 ChIP sequencing libraries generated from nephrectomy specimens after histone H3 lysine 36 trimethylation (H3K36me3) immunoprecipitation. From June 1, 2010, through January 1, 2013, we enrolled 328 patients with RCC. Our mean (SD) TCGA RNA integrity numbers (RINs) were 8.1 (0.8) for papillary RCC, with a 12.5% overall rate of sample disqualification for RIN <7. Banked plasma had significantly less albumin oxidation (by mass spectrometry analysis) than plasma kept at 25°C (P<.001). For ChIP sequencing, the FastQC score for average read quality was at least 30 for 91% to 95% of paired-end reads. In parallel, we analyzed frozen tissue by RNA sequencing; after genome alignment, only 0.2% to 0.4% of total reads failed the default quality check steps of Bowtie2, which was comparable to the disqualification ratio (0.1%) of the 786-O RCC cell line that was prepared under optimal RNA isolation conditions. The overall correlation coefficients for gene expression between Mayo Clinic vs TCGA tissues ranged from 0.75 to 0.82. These data support the generation of high-quality nucleic acids for genomic analyses from banked RCC. Importantly, the protocol does not interfere with routine clinical care. Collections over defined time points during disease treatment further enhance collaborative efforts to integrate genomic information with outcomes.

ContributorsHo, Thai H. (Author) / Nunez Nateras, Rafael (Author) / Yan, Huihuang (Author) / Park, Jin (Author) / Jensen, Sally (Author) / Borges, Chad (Author) / Lee, Jeong Heon (Author) / Champion, Mia D. (Author) / Tibes, Raoul (Author) / Bryce, Alan H. (Author) / Carballido, Estrella M. (Author) / Todd, Mark A. (Author) / Joseph, Richard W. (Author) / Wong, William W. (Author) / Parker, Alexander S. (Author) / Stanton, Melissa L. (Author) / Castle, Erik P. (Author) / Biodesign Institute (Contributor)
Created2015-07-16
128657-Thumbnail Image.png
Description

This study examines the spatial and temporal patterns of the surface urban heat island (SUHI) intensity in the Phoenix metropolitan area and the relationship with land use land cover (LULC) change between 2000 and 2014. The objective is to identify specific regions in Phoenix that have been increasingly heated and

This study examines the spatial and temporal patterns of the surface urban heat island (SUHI) intensity in the Phoenix metropolitan area and the relationship with land use land cover (LULC) change between 2000 and 2014. The objective is to identify specific regions in Phoenix that have been increasingly heated and cooled to further understand how LULC change influences the SUHI intensity. The data employed include MODerate-resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) 8-day composite June imagery, and classified LULC maps generated using 2000 and 2014 Landsat imagery. Results show that the regions that experienced the most significant LST changes during the study period are primarily on the outskirts of the Phoenix metropolitan area for both daytime and nighttime. The conversion to urban, residential, and impervious surfaces from all other LULC types has been identified as the primary cause of the UHI effect in Phoenix. Vegetation cover has been shown to significantly lower LST for both daytime and nighttime due to its strong cooling effect by producing more latent heat flux and less sensible heat flux. We suggest that urban planners, decision-makers, and city managers formulate new policies and regulations that encourage residential, commercial, and industrial developers to include more vegetation when planning new construction.

ContributorsWang, Chuyuan (Author) / Myint, Soe (Author) / Wang, Zhi-Hua (Author) / Song, Jiyun (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-02-26
135584-Thumbnail Image.png
Description
Breast cancer is the leading cause of cancer-related deaths of women in the united states. Traditionally, Breast cancer is predominantly treated by a combination of surgery, chemotherapy, and radiation therapy. However, due to the significant negative side effects associated with these traditional treatments, there has been substantial efforts to develo

Breast cancer is the leading cause of cancer-related deaths of women in the united states. Traditionally, Breast cancer is predominantly treated by a combination of surgery, chemotherapy, and radiation therapy. However, due to the significant negative side effects associated with these traditional treatments, there has been substantial efforts to develop alternative therapies to treat cancer. One such alternative therapy is a peptide-based therapeutic cancer vaccine. Therapeutic cancer vaccines enhance an individual's immune response to a specific tumor. They are capable of doing this through artificial activation of tumor specific CTLs (Cytotoxic T Lymphocytes). However, in order to artificially activate tumor specific CTLs, a patient must be treated with immunogenic epitopes derived from their specific cancer type. We have identified that the tumor associated antigen, TPD52, is an ideal target for a therapeutic cancer vaccine. This designation was due to the overexpression of TPD52 in a variety of different cancer types. In order to start the development of a therapeutic cancer vaccine for TPD52-related cancers, we have devised a two-step strategy. First, we plan to create a list of potential TPD52 epitopes by using epitope binding and processing prediction tools. Second, we plan to attempt to experimentally identify MHC class I TPD52 epitopes in vitro. We identified 942 potential 9 and 10 amino acid epitopes for the HLAs A1, A2, A3, A11, A24, B07, B27, B35, B44. These epitopes were predicted by using a combination of 3 binding prediction tools and 2 processing prediction tools. From these 942 potential epitopes, we selected the top 50 epitopes ranked by a combination of binding and processing scores. Due to the promiscuity of some predicted epitopes for multiple HLAs, we ordered 38 synthetic epitopes from the list of the top 50 epitope. We also performed a frequency analysis of the TPD52 protein sequence and identified 3 high volume regions of high epitope production. After the epitope predictions were completed, we proceeded to attempt to experimentally detected presented TPD52 epitopes. First, we successful transduced parental K562 cells with TPD52. After transduction, we started the optimization process for the immunoprecipitation protocol. The optimization of the immunoprecipitation protocol proved to be more difficult than originally believed and was the main reason that we were unable to progress past the transduction of the parental cells. However, we believe that we have identified the issues and will be able to complete the experiment in the coming months.
ContributorsWilson, Eric Andrew (Author) / Anderson, Karen (Thesis director) / Borges, Chad (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
141208-Thumbnail Image.png
Description
Studies on urban heat island (UHI) have been more than a century after the phenomenon was first discovered in the early 1800s. UHI emerges as the source of many urban environmental problems and exacerbates the living environment in cities. Under the challenges of increasing urbanization and future climate changes, there

Studies on urban heat island (UHI) have been more than a century after the phenomenon was first discovered in the early 1800s. UHI emerges as the source of many urban environmental problems and exacerbates the living environment in cities. Under the challenges of increasing urbanization and future climate changes, there is a pressing need for sustainable adaptation/mitigation strategies for UHI effects, one popular option being the use of reflective materials. While it is introduced as one effective method to reduce temperature and energy consumption in cities, its impacts on multi-dimensional environmental sustainability and large-scale non-local effect are inadequately explored. This paper provides a synthetic overview of potential environmental impacts of reflective materials at a variety of scales, ranging from energy load on a single building to regional hydroclimate. The review shows that mitigation potential of reflective materials depends on a portfolio of factors, including building characteristics, urban environment, meteorological and geographical conditions, to name a few. Precaution needs to be exercised by city planners and policy makers for large-scale deployment of reflective materials before their environmental impacts, especially on regional hydroclimates, are better understood. In general, it is recommended that optimal strategy for UHI needs to be determined on a city-by-city basis, rather than adopting a “one-solution-fits-all” strategy.
ContributorsYang, Jiachuan (Contributor) / Wang, Zhi-Hua (Correspondent) / Kaloush, Kamil (Contributor)
Created2015-06-11