Matching Items (53)
Filtering by

Clear all filters

128114-Thumbnail Image.png
Description

The net storage heat flux (ΔQ[subscript S]) is important in the urban surface energy balance (SEB) but its determination remains a significant challenge. The hysteresis pattern of the diurnal relation between the ΔQ[subscript S] and net all-wave radiation (Q[superscript ∗]) has been captured in the Objective Hysteresis Model (OHM) parameterization

The net storage heat flux (ΔQ[subscript S]) is important in the urban surface energy balance (SEB) but its determination remains a significant challenge. The hysteresis pattern of the diurnal relation between the ΔQ[subscript S] and net all-wave radiation (Q[superscript ∗]) has been captured in the Objective Hysteresis Model (OHM) parameterization of ΔQ[subscript S]. Although successfully used in urban areas, the limited availability of coefficients for OHM hampers its application. To facilitate use, and enhance physical interpretations of the OHM coefficients, an analytical solution of the one-dimensional advection–diffusion equation of coupled heat and liquid water transport in conjunction with the SEB is conducted, allowing development of AnOHM (Analytical Objective Hysteresis Model). A sensitivity test of AnOHM to surface properties and hydrometeorological forcing is presented using a stochastic approach (subset simulation). The sensitivity test suggests that the albedo, Bowen ratio and bulk transfer coefficient, solar radiation and wind speed are most critical. AnOHM, driven by local meteorological conditions at five sites with different land use, is shown to simulate the ΔQ[subscript S] flux well (RMSE values of ∼ 30 W m[superscript −2]). The intra-annual dynamics of OHM coefficients are explored. AnOHM offers significant potential to enhance modelling of the surface energy balance over a wider range of conditions and land covers.

ContributorsSun, Ting (Author) / Wang, Zhi-Hua (Author) / Oechel, Walter C. (Author) / Grimmond, Sue (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-07-27
128276-Thumbnail Image.png
Description

Urban land–atmosphere interactions can be captured by numerical modeling framework with coupled land surface and atmospheric processes, while the model performance depends largely on accurate input parameters. In this study, we use an advanced stochastic approach to quantify parameter uncertainty and model sensitivity of a coupled numerical framework for urban

Urban land–atmosphere interactions can be captured by numerical modeling framework with coupled land surface and atmospheric processes, while the model performance depends largely on accurate input parameters. In this study, we use an advanced stochastic approach to quantify parameter uncertainty and model sensitivity of a coupled numerical framework for urban land–atmosphere interactions. It is found that the development of urban boundary layer is highly sensitive to surface characteristics of built terrains. Changes of both urban land use and geometry impose significant impact on the overlying urban boundary layer dynamics through modification on bottom boundary conditions, i.e., by altering surface energy partitioning and surface aerodynamic resistance, respectively. Hydrothermal properties of conventional and green roofs have different impacts on atmospheric dynamics due to different surface energy partitioning mechanisms. Urban geometry (represented by the canyon aspect ratio), however, has a significant nonlinear impact on boundary layer structure and temperature. Besides, managing rooftop roughness provides an alternative option to change the boundary layer thermal state through modification of the vertical turbulent transport. The sensitivity analysis deepens our insight into the fundamental physics of urban land–atmosphere interactions and provides useful guidance for urban planning under challenges of changing climate and continuous global urbanization.

ContributorsSong, Jiyun (Author) / Wang, Zhi-Hua (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-05-24
129647-Thumbnail Image.png
Description

The hysteresis effect in diurnal cycles of net radiation R-n and ground heat flux G(0) has been observed in many studies, while the governing mechanism remains vague. In this study, we link the phenomenology of hysteresis loops to the wave phase difference between the diurnal evolutions of various terms in

The hysteresis effect in diurnal cycles of net radiation R-n and ground heat flux G(0) has been observed in many studies, while the governing mechanism remains vague. In this study, we link the phenomenology of hysteresis loops to the wave phase difference between the diurnal evolutions of various terms in the surface energy balance. R-n and G(0) are parameterized with the incoming solar radiation and the surface temperature as two control parameters of the surface energy partitioning. The theoretical analysis shows that the vertical water flux W and the scaled ratio A(s)*/A(T)* (net shortwave radiation to outgoing longwave radiation) play crucial roles in shaping hysteresis loops of R-n and G(0). Comparisons to field measurements indicate that hysteresis loops for different land covers can be well captured by the theoretical model, which is also consistent with Camuffo-Bernadi formula. This study provides insight into the surface partitioning and temporal evolution of the energy budget at the land surface.

ContributorsSun, Ting (Author) / Wang, Zhi-Hua (Author) / Ni, Guang-Heng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2013-09-18
127932-Thumbnail Image.png
Description

We study the so-called Descent, or [bar over Q], Equation for the null polygonal supersymmetric Wilson loop in the framework of the pentagon operator product expansion. To properly address this problem, one requires to restore the cyclicity of the loop broken by the choice of OPE channels. In the course

We study the so-called Descent, or [bar over Q], Equation for the null polygonal supersymmetric Wilson loop in the framework of the pentagon operator product expansion. To properly address this problem, one requires to restore the cyclicity of the loop broken by the choice of OPE channels. In the course of the study, we unravel a phenomenon of twist enhancement when passing to a cyclically shifted channel. Currently, we focus on the consistency of the all-order Descent Equation for the particular case relating the NMHV heptagon to MHV hexagon. We find that the equation establishes a relation between contributions of different twists and successfully verify it in perturbation theory making use of available bootstrap predictions for elementary pentagons.

ContributorsBelitsky, Andrei (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-10-24
127905-Thumbnail Image.png
Description

We present a new approach to computing event shape distributions or, more precisely, charge flow correlations in a generic conformal field theory (CFT). These infrared finite observables are familiar from collider physics studies and describe the angular distribution of global charges in outgoing radiation created from the vacuum by some

We present a new approach to computing event shape distributions or, more precisely, charge flow correlations in a generic conformal field theory (CFT). These infrared finite observables are familiar from collider physics studies and describe the angular distribution of global charges in outgoing radiation created from the vacuum by some source. The charge flow correlations can be expressed in terms of Wightman correlation functions in a certain limit. We explain how to compute these quantities starting from their Euclidean analogues by means of a nontrivial analytic continuation which, in the framework of CFT, can be performed elegantly in Mellin space. The relation between the charge flow correlations and Euclidean correlation functions can be reformulated directly in configuration space, bypassing the Mellin representation, as a certain Lorentzian double discontinuity of the correlation function integrated along the cuts. We illustrate the general formalism in N = 4 SYM, making use of the well-known results on the four-point correlation function of half-BPS scalar operators. We compute the double scalar flow correlation in N = 4 SYM, at weak and strong coupling and show that it agrees with known results obtained by different techniques. One of the remarkable features of the N = 4 theory is that the scalar and energy flow correlations are proportional to each other. Imposing natural physical conditions on the energy flow correlations (finiteness, positivity and regularity), we formulate additional constraints on the four-point correlation functions in N = 4SYM that should be valid at any coupling and away from the planar limit.

ContributorsBelitsky, Andrei (Author) / Hohenegger, S. (Author) / Korchemsky, G. P. (Author) / Sokatchev, E. (Author) / Zhiboedov, A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-04-30
127909-Thumbnail Image.png
Description

We analyze the near-collinear limit of the null polygonal hexagon super Wilson loop in the planar N = 4 super-Yang–Mills theory. We focus on its Grassmann components which are dual to next-to-maximal helicity-violating (NMHV) scattering amplitudes. The kinematics in question is studied within a framework of the operator product expansion

We analyze the near-collinear limit of the null polygonal hexagon super Wilson loop in the planar N = 4 super-Yang–Mills theory. We focus on its Grassmann components which are dual to next-to-maximal helicity-violating (NMHV) scattering amplitudes. The kinematics in question is studied within a framework of the operator product expansion that encodes propagation of excitations on the background of the color flux tube stretched between the sides of Wilson loop contour. While their dispersion relation is known to all orders in 't Hooft coupling from previous studies, we find their form factor couplings to the Wilson loop. This is done making use of a particular tessellation of the loop where pentagon transitions play a fundamental role. Being interested in NMHV amplitudes, the corresponding building blocks carry a nontrivial charge under the SU(4) R-symmetry group. Restricting the current consideration to twist-two accuracy, we analyze two-particle contributions with a fermion as one of the constituents in the pair. We demonstrate that these nonsinglet pentagons obey bootstrap equations that possess consistent solutions for any value of the coupling constant. To confirm the correctness of these predictions, we calculate their contribution to the super Wilson loop demonstrating agreement with recent results to four-loop order in 't Hooft coupling.

ContributorsBelitsky, Andrei (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-05
127914-Thumbnail Image.png
Description

We study event shapes in N = 4SYM describing the angular distribution of energy and R-charge in the final states created by the simplest half-BPS scalar operator. Applying the approach developed in the companion paper arXiv:1309.0769, we compute these observables using the correlation functions of certain components of the N

We study event shapes in N = 4SYM describing the angular distribution of energy and R-charge in the final states created by the simplest half-BPS scalar operator. Applying the approach developed in the companion paper arXiv:1309.0769, we compute these observables using the correlation functions of certain components of the N = 4 stress-tensor supermultiplet: the half-BPS operator itself, the R-symmetry current and the stress tensor. We present master formulas for the all-order event shapes as convolutions of the Mellin amplitude defining the correlation function of the half-BPS operators, with a coupling-independent kernel determined by the choice of the observable. We find remarkably simple relations between various event shapes following from N = 4 superconformal symmetry. We perform thorough checks at leading order in the weak coupling expansion and show perfect agreement with the conventional calculations based on amplitude techniques. We extend our results to strong coupling using the correlation function of half-BPS operators obtained from the AdS/CFT correspondence.

ContributorsBelitsky, Andrei (Author) / Hohenegger, S. (Author) / Korchemsky, G. P. (Author) / Sokatchev, E. (Author) / Zhiboedov, A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-04-30
127838-Thumbnail Image.png
Description

We compute one-loop renormalization group equations for non-singlet twist-four operators in QCD. The calculation heavily relies on the light-cone gauge formalism in the momentum fraction space that essentially rephrases the analysis of all two-to-two and two-to-three transition kernels to purely algebraic manipulations both for non- and quasipartonic operators. This is

We compute one-loop renormalization group equations for non-singlet twist-four operators in QCD. The calculation heavily relies on the light-cone gauge formalism in the momentum fraction space that essentially rephrases the analysis of all two-to-two and two-to-three transition kernels to purely algebraic manipulations both for non- and quasipartonic operators. This is the first brute force calculation of this sector available in the literature. Fourier transforming our findings to the coordinate space, we checked them against available results obtained within a conformal symmetry-based formalism that bypasses explicit diagrammatic calculations and confirmed agreement with the latter.

ContributorsJi, Yao (Author) / Belitsky, Andrei (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-06
127844-Thumbnail Image.png
Description

Scattering amplitudes in maximally supersymmetric gauge theory are dual to super-Wilson loops on null polygonal contours. The operator product expansion for the latter revealed that their dynamics is governed by the evolution of multiparticle GKP excitations. They were shown to emerge from the spectral problem of an underlying open spin

Scattering amplitudes in maximally supersymmetric gauge theory are dual to super-Wilson loops on null polygonal contours. The operator product expansion for the latter revealed that their dynamics is governed by the evolution of multiparticle GKP excitations. They were shown to emerge from the spectral problem of an underlying open spin chain. In this work we solve this model with the help of the Baxter Q-operator and Sklyanin's Separation of Variables methods. We provide an explicit construction for eigenfunctions and eigenvalues of GKP excitations. We demonstrate how the former define the so-called multiparticle hexagon transitions in super-Wilson loops and prove their factorized form at leading order of 't Hooft coupling for particle number-preserving transitions that were suggested earlier in a generic case.

ContributorsBelitsky, Andrei (Author) / Derkachov, S. E. (Author) / Manashov, A. N. (Author)
Created2014-03-14
127860-Thumbnail Image.png
Description

We address the near-collinear expansion of multiparticle NMHV amplitudes, namely, the heptagon and octagons in the dual language of null polygonal super Wilson loops. In particular, we verify multiparticle factorization of charged pentagon transitions in terms of pentagons for single flux-tube excitations within the framework of refined operator product expansion.

We address the near-collinear expansion of multiparticle NMHV amplitudes, namely, the heptagon and octagons in the dual language of null polygonal super Wilson loops. In particular, we verify multiparticle factorization of charged pentagon transitions in terms of pentagons for single flux-tube excitations within the framework of refined operator product expansion. We find a perfect agreement with available tree and one-loop data.

ContributorsBelitsky, Andrei (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-06-03