Matching Items (220)
153298-Thumbnail Image.png
Description
Research in microbial biofuels has dramatically increased over the last decade. The bulk of this research has focused on increasing the production yields of cyanobacteria and algal cells and improving extraction processes. However, there has been little to no research on the potential impact of viruses on the yields of

Research in microbial biofuels has dramatically increased over the last decade. The bulk of this research has focused on increasing the production yields of cyanobacteria and algal cells and improving extraction processes. However, there has been little to no research on the potential impact of viruses on the yields of these phototrophic microbes for biofuel production. Viruses have the potential to significantly reduce microbial populations and limit their growth rates. It is therefore important to understand how viruses affect phototrophic microbes and the prevalence of these viruses in the environment. For this study, phototrophic microbes were grown in glass bioreactors, under continuous light and aeration. Detection and quantification of viruses of both environmental and laboratory microbial strains were measured through the use of a plaque assay. Plates were incubated at 25º C under continuous direct florescent light. Several environmental samples were taken from Tempe Town Lake (Tempe, AZ) and all the samples tested positive for viruses. Virus free phototrophic microbes were obtained from plaque assay plates by using a sterile loop to scoop up a virus free portion of the microbial lawn and transferred into a new bioreactor. Isolated cells were confirmed virus free through subsequent plaque assays. Viruses were detected from the bench scale bioreactors of Cyanobacteria Synechocystis PCC 6803 and the environmental samples. Viruses were consistently present through subsequent passage in fresh cultures; demonstrating viral contamination can be a chronic problem. In addition TEM was performed to examine presence or viral attachment to cyanobacterial cells and to characterize viral particles morphology. Electron micrographs obtained confirmed viral attachment and that the viruses detected were all of a similar size and shape. Particle sizes were measured to be approximately 50-60 nm. Cell reduction was observed as a decrease in optical density, with a transition from a dark green to a yellow green color for the cultures. Phototrophic microbial viruses were demonstrated to persist in the natural environment and to cause a reduction in algal populations in the bioreactors. Therefore it is likely that viruses could have a significant impact on microbial biofuel production by limiting the yields of production ponds.
ContributorsKraft, Kyle (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2014
156917-Thumbnail Image.png
Description
Radioactive cesium (137Cs), released from nuclear power plants and nuclear accidental releases, is a problem due to difficulties regarding its removal. Efforts have been focused on removing cesium and the remediation of the contaminated environment. Traditional treatment techniques include Prussian blue and nano zero-valent ion (nZVI) and nano-Fe/Cu particles to

Radioactive cesium (137Cs), released from nuclear power plants and nuclear accidental releases, is a problem due to difficulties regarding its removal. Efforts have been focused on removing cesium and the remediation of the contaminated environment. Traditional treatment techniques include Prussian blue and nano zero-valent ion (nZVI) and nano-Fe/Cu particles to remove Cs from water; however, they are not efficient at removing Cs when present at low concentrations of about 10 parts-per-billion (ppb), typical of concentrations found in the radioactive contaminated sites.

The objective of this study was to develop an innovative and simple method to remove Cs+ present at low concentrations by engineering a proteoliposome transporter composed of an uptake protein reconstituted into a liposome vesicle. To achieve this, the uptake protein, Kup, from E. coli, was isolated through protein extraction and purification procedures. The new and simple extraction methodology developed in this study was highly efficient and resulted in purified Kup at ~1 mg/mL. A new method was also developed to insert purified Kup protein into the bilayers of liposome vesicles. Finally, removal of CsCl (10 and 100 ppb) was demonstrated by spiking the constructed proteoliposome in lab-fortified water, followed by incubation and ultracentrifugation, and measuring Cs+ with inductively coupled plasma mass spectrometry (ICP-MS).

The ICP-MS results from testing water contaminated with 100 ppb CsCl, revealed that adding 0.1 – 8 mL of Kup proteoliposome resulted in 0.29 – 12.7% Cs removal. Addition of 0.1 – 2 mL of proteoliposome to water contaminated with 10 ppb CsCl resulted in 0.65 – 3.43% Cs removal. These removal efficiencies were greater than the control, liposome with no protein.

A linear relationship was observed between the amount of proteoliposome added to the contaminated water and removal percentage. Consequently, by adding more volumes of proteoliposome, removal can be simply improved. This suggests that with ~ 60-70 mL of proteoliposome, removal of about 90% can be achieved. The novel technique developed herein is a contribution to emerging technologies in the water and wastewater treatment industry.
ContributorsHakim Elahi, Sepideh (Author) / Conroy-Ben, Otakuye (Thesis advisor) / Abbaszadegan, Morteza (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2018
156902-Thumbnail Image.png
Description
Pipeline infrastructure forms a vital aspect of the United States economy and standard of living. A majority of the current pipeline systems were installed in the early 1900’s and often lack a reliable database reporting the mechanical properties, and information about manufacturing and installation, thereby raising a concern for their

Pipeline infrastructure forms a vital aspect of the United States economy and standard of living. A majority of the current pipeline systems were installed in the early 1900’s and often lack a reliable database reporting the mechanical properties, and information about manufacturing and installation, thereby raising a concern for their safety and integrity. Testing for the aging pipe strength and toughness estimation without interrupting the transmission and operations thus becomes important. The state-of-the-art techniques tend to focus on the single modality deterministic estimation of pipe strength and do not account for inhomogeneity and uncertainties, many others appear to rely on destructive means. These gaps provide an impetus for novel methods to better characterize the pipe material properties. The focus of this study is the design of a Bayesian Network information fusion model for the prediction of accurate probabilistic pipe strength and consequently the maximum allowable operating pressure. A multimodal diagnosis is performed by assessing the mechanical property variation within the pipe in terms of material property measurements, such as microstructure, composition, hardness and other mechanical properties through experimental analysis, which are then integrated with the Bayesian network model that uses a Markov chain Monte Carlo (MCMC) algorithm. Prototype testing is carried out for model verification, validation and demonstration and data training of the model is employed to obtain a more accurate measure of the probabilistic pipe strength. With a view of providing a holistic measure of material performance in service, the fatigue properties of the pipe steel are investigated. The variation in the fatigue crack growth rate (da/dN) along the direction of the pipe wall thickness is studied in relation to the microstructure and the material constants for the crack growth have been reported. A combination of imaging and composition analysis is incorporated to study the fracture surface of the fatigue specimen. Finally, some well-known statistical inference models are employed for prediction of manufacturing process parameters for steel pipelines. The adaptability of the small datasets for the accuracy of the prediction outcomes is discussed and the models are compared for their performance.
ContributorsDahire, Sonam (Author) / Liu, Yongming (Thesis advisor) / Jiao, Yang (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2018
155189-Thumbnail Image.png
Description
Over the past several years, the density of integrated circuits has been increasing at a very fast rate, following Moore’s law. The advent of three dimensional (3D) packaging technologies enable the increase in density of integrated circuits without necessarily shrinking the dimensions of the device. Under such constraints, the solder

Over the past several years, the density of integrated circuits has been increasing at a very fast rate, following Moore’s law. The advent of three dimensional (3D) packaging technologies enable the increase in density of integrated circuits without necessarily shrinking the dimensions of the device. Under such constraints, the solder volume necessary to join the various layers of the package is also extremely small. At smaller length scales, the local cooling rates are higher, so the microstructures are much finer than that obtained in larger joints (BGA, C4). The fraction of intermetallic compounds (IMCs) present in solder joints in these volumes will be larger. The Cu6Sn5 precipitate size and spacing, and Sn grain structure and crystallography will be different at very small volumes. These factors will most certainly affect the performance of the solder. Examining the mechanical behavior and reliability of Pb-free solders is difficult, primarily because a methodology to characterize the microstructure and the mechanics of deformation at these extremely small length scales has yet to be developed.

In this study, Sn grain orientation and Cu6Sn5 IMC fraction, size, and morphology are characterized in 3D, in pure Sn based solder joints. The obtained results show differences in morphology of Sn grains and IMC precipitates as a function of location within the solder joint indicating influence of local cooling rate differences. Ex situ and in situ electromigration tests done on 250 um and 500 um pure Sn solder joints elucidate the evolution of microstructure, specifically Sn grain growth, IMC segregation and surface degradation. This research implements 3D quantification of microstructural features over micro and nano-scales, thereby enabling a multi-scale / multi-characterization approach.
ContributorsKirubanandham, Antony (Author) / Chawla, Nikhilesh (Thesis advisor) / Jiao, Yang (Committee member) / Lu, Minhua (Committee member) / Rajagopalan, Jagannathan (Committee member) / Arizona State University (Publisher)
Created2016
154420-Thumbnail Image.png
Description
This thesis aims to investigate the impacts of foreign banks’ management model on their degree of localization and operating efficiency. I decompose their management model into five major factors, including two formative factors and three reflective factors. The two formative factors are (1) strategic orientation and (2) target customers, and

This thesis aims to investigate the impacts of foreign banks’ management model on their degree of localization and operating efficiency. I decompose their management model into five major factors, including two formative factors and three reflective factors. The two formative factors are (1) strategic orientation and (2) target customers, and the three reflective factors are (1) top management team composition, (2) organizational structure, and (3) managerial authority and incentives. I propose that the formative factors influence foreign banks’ degree of localization, as demonstrated by the reflective factors, which subsequently influence foreign banks’ operating efficiency in China.

To test the above proposition, I conduct the empirical analysis in three steps. In the first step, I investigate foreign banks’ management model by surveying 13 major foreign banks locally incorporated in Mainland China. The results suggest that these 13 foreign banks can be categorized into three distinct groups based on their management model: intergrators, customer-followers, and parent-followers. The results also indicate that intergrators have the highest level of localization while parent-followers have the lowest level of localization.

In the second step, I conduct DEA (Data Envelope Analysis) and CAMEL (Capital Adequacy, Asset Quality, Management, Earnings, Liquidity Analysis) to assess the operating efficiency of these 13 foreign banks. The assessment is conducted in two ways: 1) the inter-group comparison between foreign banks and local Chinese banks; 2) the intra-group comparison between the three distinct groups of foreign banks identified in the first step. The results indicates that the principal factor driving the operating efficiency of both local Chinese banks and foreign banks is the comprehensive technical efficiency, which includes both the quality of management and the quality of technical elements. I also find the uptrend of technical efficiency of the integrators is more stable than that of the other two groups of foreign banks.

Finally, I integrate the results from step one and step two to assess the relevance between foreign banks’ localization level and operating efficiency. I find that foreign banks that score higher in localization tend to have a higher level of operating efficiency. Although this finding is not conclusive about the causal relationship between localization and operating efficiency, it nevertheless suggests that the management model of the higher performing integrators can serve as references for the other foreign banks attempting to enhance their localization and operating efficiency. I also discuss the future trends of development in the banking industry in China and what foreign banks can learn from local Chinese banks to improve their market positions.
ContributorsSun, Minjie (Author) / Shen, Wei (Thesis advisor) / Qian, Jun (Thesis advisor) / Pei, Ker-Wei (Committee member) / Arizona State University (Publisher)
Created2016
154731-Thumbnail Image.png
Description
Carbon dioxide (CO2) is one of the most dangerous greenhouse gas. Its concentration in the atmosphere has increased to very high levels since the industrial revolution. This continues to be a threat due to increasing energy demands. 60% of the worlds global emissions come from automobiles and other such moving

Carbon dioxide (CO2) is one of the most dangerous greenhouse gas. Its concentration in the atmosphere has increased to very high levels since the industrial revolution. This continues to be a threat due to increasing energy demands. 60% of the worlds global emissions come from automobiles and other such moving sources. Hence, to stay within safe limits, it is extremely important to curb current emissions and remove those which have already been emitted. Out of many available technologies, one such technology is the moisture swing based air capture technology that makes use of resin material that absorbs CO2 when it is dry and releases it when it is wet. A mathematical model was developed to better understand the mechanism of this process. In order to validate this model, numerical simulation and experimentation was done. Once the mechanism was proved, it was seen that there are many factors and parameters that govern this process. Some of these do not have definite value. To find the best fit value for these parameters, an optimized fitting routine needs to be developed that can minimize the standard deviation of the error. This thesis looks into ways in which the optimization of parameters can be done and the possible future work by using substantial data.
ContributorsChopra, Vinuta (Author) / Lackner, Klaus S (Thesis advisor) / Fox, Peter (Committee member) / Wright, Allen (Committee member) / Arizona State University (Publisher)
Created2016
147599-Thumbnail Image.png
Description

The scope of this project is a combination of material science engineering and mechanical engineering. Overall, the main goal of this project is to develop a lightweight concrete that maintains its original strength profile. Initial research has shown that a plastic-concrete composite could create a more lightweight concrete than that

The scope of this project is a combination of material science engineering and mechanical engineering. Overall, the main goal of this project is to develop a lightweight concrete that maintains its original strength profile. Initial research has shown that a plastic-concrete composite could create a more lightweight concrete than that made using the typical gravel aggregate for concrete, while still maintaining the physical strength that concrete is known for. This will be accomplished by varying the amount of plastic in the aggregate. If successful, this project would allow concrete to be used in applications it would typically not be suitable for.<br/>After testing the strength of the concrete specimens with varying fills of plastic aggregate it was determined that the control group experienced an average peak stress of 2089 psi, the 16.67% plastic group experienced an average peak stress of 2649 psi, the 33.3% plastic group experienced an average peak stress of 1852 psi, and the 50% plastic group experienced an average stress of 924.5 psi. The average time to reach the peak stress was found to be 12 minutes and 24 seconds in the control group, 15 minutes and 34 seconds in the 16.7% plastic group, 9 minutes and 45 seconds in the 33.3% plastic group, and 10 minutes and 58 seconds in the 50% plastic group. Taking the average of the normalized weights of the cylindrical samples it was determined that the control group weighed 14.773 oz/in, the 16.7% plastic group weighed 15 oz/in, the 33.3% plastic group weighed 14.573 oz/in, and the 50% plastic group weighed 12.959 oz/in. Based on these results it can be concluded that a small addition of plastic aggregate can be beneficial in creating a lighter, stronger concrete. The results show that a 16.7% fill ratio of plastic to rock aggregate can increase the failure time and the peak strength of a composite concrete. Overall, the experiment was successful in analyzing the effects of recycled plastic aggregate in composite concrete. <br/>Some possible future studies related to this subject material are adding aluminum to the concrete, having better molds, looking for the right consistency in each mixture, mixing for each mold individually, and performing other tests on the samples.

ContributorsClegg, Lauren Taylor (Co-author) / Benning, Taylor (Co-author) / Nian, Qiong (Thesis director) / Jiao, Yang (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147600-Thumbnail Image.png
Description

The scope of this project is a combination of material science engineering and<br/>mechanical engineering. Overall, the main goal of this project is to develop a lightweight<br/>concrete that maintains its original strength profile. Initial research has shown that a<br/>plastic-concrete composite could create a more lightweight concrete than that made using the<br/>typical

The scope of this project is a combination of material science engineering and<br/>mechanical engineering. Overall, the main goal of this project is to develop a lightweight<br/>concrete that maintains its original strength profile. Initial research has shown that a<br/>plastic-concrete composite could create a more lightweight concrete than that made using the<br/>typical gravel aggregate for concrete, while still maintaining the physical strength that concrete is<br/>known for. This will be accomplished by varying the amount of plastic in the aggregate. If<br/>successful, this project would allow concrete to be used in applications it would typically not be<br/>suitable for.<br/>After testing the strength of the concrete specimens with varying fills of plastic aggregate<br/>it was determined that the control group experienced an average peak stress of 2089 psi, the<br/>16.67% plastic group experienced an average peak stress of 2649 psi, the 33.3% plastic group<br/>experienced an average peak stress of 1852 psi, and the 50% plastic group experienced an<br/>average stress of 924.5 psi. The average time to reach the peak stress was found to be 12 minutes<br/>and 24 seconds in the control group, 15 minutes and 34 seconds in the 16.7% plastic group, 9<br/>minutes and 45 seconds in the 33.3% plastic group, and 10 minutes and 58 seconds in the 50%<br/>plastic group. Taking the average of the normalized weights of the cylindrical samples it was<br/>determined that the control group weighed 14.773 oz/in, the 16.7% plastic group weighed 15<br/>oz/in, the 33.3% plastic group weighed 14.573 oz/in, and the 50% plastic group weighed 12.959<br/>oz/in. Based on these results it can be concluded that a small addition of plastic aggregate can be<br/>beneficial in creating a lighter, stronger concrete. The results show that a 16.7% fill ratio of<br/>plastic to rock aggregate can increase the failure time and the peak strength of a composite<br/>concrete. Overall, the experiment was successful in analyzing the effects of recycled plastic<br/>aggregate in composite concrete.<br/>Some possible future studies related to this subject material are adding aluminum to the<br/>concrete, having better molds, looking for the right consistency in each mixture, mixing for each<br/>mold individually, and performing other tests on the samples.

ContributorsBenning, Taylor Ann (Co-author) / Clegg, Lauren (Co-author) / Nian, Qiong (Thesis director) / Jiao, Yang (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
153596-Thumbnail Image.png
Description
The current study combines field study, survey study, and public financial reports, and conducts an in-depths comprehensive study of the cost of the global tire industry. By comparing the price and the total cost structure of standardized tire products, we investigate Chinese tire industry’s global competitiveness, especially in light of

The current study combines field study, survey study, and public financial reports, and conducts an in-depths comprehensive study of the cost of the global tire industry. By comparing the price and the total cost structure of standardized tire products, we investigate Chinese tire industry’s global competitiveness, especially in light of China’s fast increasing labor cost. By constructing a comprehensive cost index (CCI), this dissertation estimates the evolution and forecasts the trend of global tire industry’s cost structure. Based on our empirical analysis, we provide various recommendations for Chinese tire manufacturers, other manufacturing industries, and foreign trade policy makers.
ContributorsZhang, Ning (Author) / Zhu, Ning (Thesis advisor) / Shen, Wei (Thesis advisor) / Chen, Hong (Committee member) / Arizona State University (Publisher)
Created2015
Description
Transition metal dichalcogenides (TMDs) are a family of layered crystals with the chemical formula MX2 (M = W, Nb, Mo, Ta and X = S, Se, Te). These TMDs exhibit many fascinating optical and electronic properties making them strong candidates for high-end electronics, optoelectronic application, and spintronics. The layered structure

Transition metal dichalcogenides (TMDs) are a family of layered crystals with the chemical formula MX2 (M = W, Nb, Mo, Ta and X = S, Se, Te). These TMDs exhibit many fascinating optical and electronic properties making them strong candidates for high-end electronics, optoelectronic application, and spintronics. The layered structure of TMDs allows the crystal to be mechanically exfoliated to a monolayer limit, where bulk-scale properties no longer apply and quantum effects arise, including an indirect-to-direct bandgap transition. Controllably tuning the electronic properties of TMDs like WSe2 is therefore a highly attractive prospect achieved by substitutionally doping the metal atoms to enable n- and p-type doping at various concentrations, which can ultimately lead to more effective electronic devices due to increased charge carriers, faster transmission times and possibly new electronic and optical properties to be probed. WSe2 is expected to exhibit the largest spin splitting size and spin-orbit coupling, which leads to exciting potential applications in spintronics over its similar TMD counterparts, which can be controlled through electrical doping. Unfortunately, the well-established doping technique of ion implantation is unable to preserve the crystal quality leading to a major roadblock for the electronics applications of tungsten diselenide. Synthesizing WSe2 via chemical vapor transport (CVT) and flux method have been previously established, but controllable p-type (niobium) doping WSe2 in low concentrations ranges (<1 at %) by CVT methods requires further experimentation and study. This work studies the chemical vapor transport synthesis of doped-TMD W1-xNbxSe2 through characterization techniques of X-ray Diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, and X-ray Photoelectron Spectroscopy techniques. In this work, it is observed that excess selenium transport does not enhance the controllability of niobium doping in WSe2, and that tellurium tetrachloride (TeCl4) transport has several barriers in successfully incorporating niobium into WSe2.
ContributorsRuddick, Hayley (Author) / Tongay, Sefaattin (Thesis director) / Jiao, Yang (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor)
Created2024-05