Matching Items (92)
Filtering by

Clear all filters

151211-Thumbnail Image.png
Description
CpG methylation is an essential requirement for the normal development of mammals, but aberrant changes in the methylation can lead to tumor progression and cancer. An in-depth understanding of this phenomenon can provide insights into the mechanism of gene repression. We present a study comparing methylated DNA and normal DNA

CpG methylation is an essential requirement for the normal development of mammals, but aberrant changes in the methylation can lead to tumor progression and cancer. An in-depth understanding of this phenomenon can provide insights into the mechanism of gene repression. We present a study comparing methylated DNA and normal DNA wrt its persistence length and contour length. Although, previous experiments and studies show no difference between the physical properties of the two, the data collected and interpreted here gives a different picture to the methylation phenomena and its effect on gene silencing. The study was extended to the artificially reconstituted chromatin and its interactions with the methyl CpG binding proteins were also probed.
ContributorsKaur, Parminder (Author) / Lindsay, Stuart (Thesis advisor) / Ros, Robert (Committee member) / Tao, Nongjian (Committee member) / Vaiana, Sara (Committee member) / Beckenstein, Oliver (Committee member) / Arizona State University (Publisher)
Created2012
136083-Thumbnail Image.png
Description
Mortality of 1918 influenza virus was high, partly due to bacteria coinfections. We characterize pandemic mortality in Arizona, which had high prevalence of tuberculosis. We applied regressions to over 35,000 data points to estimate the basic reproduction number and excess mortality. Age-specific mortality curves show elevated mortality for all age

Mortality of 1918 influenza virus was high, partly due to bacteria coinfections. We characterize pandemic mortality in Arizona, which had high prevalence of tuberculosis. We applied regressions to over 35,000 data points to estimate the basic reproduction number and excess mortality. Age-specific mortality curves show elevated mortality for all age groups, especially the young, and senior sparing effects. The low value for reproduction number indicates that transmissibility was moderately low.
ContributorsJenner, Melinda Eva (Author) / Chowell-Puente, Gerardo (Thesis director) / Kostelich, Eric (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136284-Thumbnail Image.png
Description
Background: While research has quantified the mortality burden of the 1957 H2N2 influenza pandemic in the United States, little is known about how the virus spread locally in Arizona, an area where the dry climate was promoted as reducing respiratory illness transmission yet tuberculosis prevalence was high.
Methods: Using archival

Background: While research has quantified the mortality burden of the 1957 H2N2 influenza pandemic in the United States, little is known about how the virus spread locally in Arizona, an area where the dry climate was promoted as reducing respiratory illness transmission yet tuberculosis prevalence was high.
Methods: Using archival death certificates from 1954 to 1961, this study quantified the age-specific seasonal patterns, excess-mortality rates, and transmissibility patterns of the 1957 pandemic in Maricopa County, Arizona. By applying cyclical Serfling linear regression models to weekly mortality rates, the excess-mortality rates due to respiratory and all-causes were estimated for each age group during the pandemic period. The reproduction number was quantified from weekly data using a simple growth rate method and generation intervals of 3 and 4 days. Local newspaper articles from The Arizona Republic were analyzed from 1957-1958.
Results: Excess-mortality rates varied between waves, age groups, and causes of death, but overall remained low. From October 1959-June 1960, the most severe wave of the pandemic, the absolute excess-mortality rate based on respiratory deaths per 10,000 population was 17.85 in the elderly (≥65 years). All other age groups had extremely low excess-mortality and the typical U-shaped age-pattern was absent. However, relative risk was greatest (3.61) among children and young adolescents (5-14 years) from October 1957-March 1958, based on incidence rates of respiratory deaths. Transmissibility was greatest during the same 1957-1958 period, when the mean reproduction number was 1.08-1.11, assuming 3 or 4 day generation intervals and exponential or fixed distributions.
Conclusions: Maricopa County largely avoided pandemic influenza from 1957-1961. Understanding this historical pandemic and the absence of high excess-mortality rates and transmissibility in Maricopa County may help public health officials prepare for and mitigate future outbreaks of influenza.
ContributorsCobos, April J (Author) / Jehn, Megan (Thesis director) / Chowell-Puente, Gerardo (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2015-05
135647-Thumbnail Image.png
Description
Clean water for drinking, food preparation, and bathing is essential for astronaut health and safety during long duration habitation of the International Space Station (ISS), including future missions to Mars. Despite stringent water treatment and recycling efforts on the ISS, it is impossible to completely prevent microbial contamination of onboard

Clean water for drinking, food preparation, and bathing is essential for astronaut health and safety during long duration habitation of the International Space Station (ISS), including future missions to Mars. Despite stringent water treatment and recycling efforts on the ISS, it is impossible to completely prevent microbial contamination of onboard water supplies. In this work, we used a spaceflight analogue culture system to better understand how the microgravity environment can influence the pathogenesis-related characteristics of Burkholderia cepacia complex (Bcc), an opportunistic pathogen previously recovered from the ISS water system. The results of the present study suggest that there may be important differences in how this pathogen can respond and adapt to spaceflight and other low fluid shear environments encountered during their natural life cycles. Future studies are aimed at understanding the underlying mechanisms responsible for these phenotypes.
ContributorsKang, Bianca Younseon (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, Mark (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
130393-Thumbnail Image.png
Description
Mathematical epidemiology, one of the oldest and richest areas in mathematical biology, has significantly enhanced our understanding of how pathogens emerge, evolve, and spread. Classical epidemiological models, the standard for predicting and managing the spread of infectious disease, assume that contacts between susceptible and infectious individuals depend on their relative

Mathematical epidemiology, one of the oldest and richest areas in mathematical biology, has significantly enhanced our understanding of how pathogens emerge, evolve, and spread. Classical epidemiological models, the standard for predicting and managing the spread of infectious disease, assume that contacts between susceptible and infectious individuals depend on their relative frequency in the population. The behavioral factors that underpin contact rates are not generally addressed. There is, however, an emerging a class of models that addresses the feedbacks between infectious disease dynamics and the behavioral decisions driving host contact. Referred to as “economic epidemiology” or “epidemiological economics,” the approach explores the determinants of decisions about the number and type of contacts made by individuals, using insights and methods from economics. We show how the approach has the potential both to improve predictions of the course of infectious disease, and to support development of novel approaches to infectious disease management.
Created2015-12-01
130348-Thumbnail Image.png
Description
Background
Seroepidemiological studies before and after the epidemic wave of H1N1-2009 are useful for estimating population attack rates with a potential to validate early estimates of the reproduction number, R, in modeling studies.
Methodology/Principal Findings
Since the final epidemic size, the proportion of individuals in a population who become infected during an epidemic,

Background
Seroepidemiological studies before and after the epidemic wave of H1N1-2009 are useful for estimating population attack rates with a potential to validate early estimates of the reproduction number, R, in modeling studies.
Methodology/Principal Findings
Since the final epidemic size, the proportion of individuals in a population who become infected during an epidemic, is not the result of a binomial sampling process because infection events are not independent of each other, we propose the use of an asymptotic distribution of the final size to compute approximate 95% confidence intervals of the observed final size. This allows the comparison of the observed final sizes against predictions based on the modeling study (R = 1.15, 1.40 and 1.90), which also yields simple formulae for determining sample sizes for future seroepidemiological studies. We examine a total of eleven published seroepidemiological studies of H1N1-2009 that took place after observing the peak incidence in a number of countries. Observed seropositive proportions in six studies appear to be smaller than that predicted from R = 1.40; four of the six studies sampled serum less than one month after the reported peak incidence. The comparison of the observed final sizes against R = 1.15 and 1.90 reveals that all eleven studies appear not to be significantly deviating from the prediction with R = 1.15, but final sizes in nine studies indicate overestimation if the value R = 1.90 is used.
Conclusions
Sample sizes of published seroepidemiological studies were too small to assess the validity of model predictions except when R = 1.90 was used. We recommend the use of the proposed approach in determining the sample size of post-epidemic seroepidemiological studies, calculating the 95% confidence interval of observed final size, and conducting relevant hypothesis testing instead of the use of methods that rely on a binomial proportion.
Created2011-03-24
131295-Thumbnail Image.png
Description
A major challenge with tissue samples used for biopsies is the inability to monitor their molecular quality before diagnostic testing. When tissue is resected from a patient, the cells are removed from their blood supply and normal temperature-controlled environment, which causes significant biological stress. As a result, the molecular composition

A major challenge with tissue samples used for biopsies is the inability to monitor their molecular quality before diagnostic testing. When tissue is resected from a patient, the cells are removed from their blood supply and normal temperature-controlled environment, which causes significant biological stress. As a result, the molecular composition and integrity undergo significant change. Currently, there is no method to track the effects of these artefactual stresses on the sample tissue to determine any deviations from the actual patient physiology. Without a way to track these changes, pathologists have to blindly trust that the tissue samples they are given are of high quality and fit for molecular analysis; physicians use the analysis to make diagnoses and treatment plans based on the assumption that the samples are valid. A possible way to track the quality of the tissue is by measuring volatile organic compounds (VOCs) released from the samples. VOCs are carbon-based chemicals with high vapor pressure at room temperature. There are over 1,800 known VOCs within humans and a number of these exist in every tissue sample. They are individualized and often indicative of a person’s metabolic condition. For this reason, VOCs are often used for diagnostic purposes. Their usefulness in diagnostics, reflectiveness of a person’s metabolic state, and accessibility lends them to being beneficial for tracking degradation. We hypothesize that there is a relationship between the change in concentration of the volatile organic compounds of a sample, and the molecular quality of a sample. This relationship is what would indicate the accuracy of the tissue quality used for a biopsy in relation to the tissue within the body.
ContributorsSharma, Nandini (Co-author) / Fragoso, Claudia (Co-author) / Grenier, Tyler (Co-author) / Hanson, Abigail (Co-author) / Compton, Carolyn (Thesis director) / Tao, Nongjian (Committee member) / Moakley, George (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131560-Thumbnail Image.png
Description
Spaceflight and spaceflight analogue culture enhance the virulence and pathogenesis-related stress resistance of the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). This is an alarming finding as it suggests that astronauts may have an increased risk of infection during spaceflight. This risk is further exacerbated as multiple studies indicate

Spaceflight and spaceflight analogue culture enhance the virulence and pathogenesis-related stress resistance of the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). This is an alarming finding as it suggests that astronauts may have an increased risk of infection during spaceflight. This risk is further exacerbated as multiple studies indicate that spaceflight negatively impacts aspects of the immune system. In order to ensure astronaut safety during long term missions, it is important to study the phenotypic effects of the microgravity environment on a range of medically important microbial pathogens that might be encountered by the crew. This ground-based study uses the NASA-engineered Rotating Wall Vessel (RWV) bioreactor as a spaceflight analogue culture system to grow bacteria under low fluid shear forces relative to those encountered in microgravity, and interestingly, in the intestinal tract during infection. The culture environment in the RWV is commonly referred to as low shear modeled microgravity (LSMMG). In this study, we characterized the stationary phase stress response of the enteric pathogen, Salmonella enterica serovar Enteritidis (S. Enteritidis), to LSMMG culture. We showed that LSMMG enhanced the resistance of stationary phase cultures of S. Enteritidis to acid and thermal stressors, which differed from the LSSMG stationary phase response of the closely related pathovar, S. Typhimurium. Interestingly, LSMMG increased the ability of both S. Enteritidis and S. Typhimurium to adhere to, invade into, and survive within an in vitro 3-D intestinal co-culture model containing immune cells. Our results indicate that LSMMG regulates pathogenesis-related characteristics of S. Enteritidis in ways that may present an increased health risk to astronauts during spaceflight missions.
ContributorsKoroli, Sara (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, C. Mark (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133138-Thumbnail Image.png
Description
The International Space Station (ISS) utilizes recycled water for consumption, cleaning and air humidity control. The Environmental Control and Life Support Systems (ECLSS) have been rigorously tested at the NASA Johnson Space Center. Despite the advanced engineering of the water recovery system, bacterial biofilms have been recovered from this potable

The International Space Station (ISS) utilizes recycled water for consumption, cleaning and air humidity control. The Environmental Control and Life Support Systems (ECLSS) have been rigorously tested at the NASA Johnson Space Center. Despite the advanced engineering of the water recovery system, bacterial biofilms have been recovered from this potable water source. Microbial contamination of potable water poses a potential threat to crew members onboard the ISS. Because astronauts have been found to have compromised immune systems, bacterial strains that would not typically be considered a danger must be carefully studied to better understand the mechanisms enabling their survival, including polymicrobial interactions. The need for a more thorough understanding of the effect of spaceflight environment on polymicrobial interactions and potential impact on crew health and vehicle integrity is heightened since 1) several potential pathogens have been isolated from the ISS potable water system, 2) spaceflight has been shown to induce unexpected alterations in microbial responses, and 3) emergent phenotypes are often observed when multiple bacterial species are co- cultured together, as compared to pure cultures of single species. In order to address these concerns, suitable growth media are required that will not only support the isolation of these microbes but also the ability to distinguish between them when grown as mixed cultures. In this study, selective and/or differential media were developed for bacterial isolates collected from the ISS potable water supply. In addition to facilitating discrimination between bacteria, the ideal media for each strain was intended to have a 100% recovery rate compared to traditional R2A media. Antibiotic and reagent susceptibility and resistance tests were conducted for the purpose of developing each individual medium. To study a wide range of targets, 12 antibiotics were selected from seven major classes, including penicillin, cephalosporins, fluoroquinolones, aminoglycosides, glycopeptides/lipoglycopeptides, macrolides/lincosamides/streptogramins, tetracyclines, in addition to seven unclassified antibiotics and three reagents. Once developed, medium efficacy was determined by means of growth curve experiments. The development of these media is a critical step for further research into the mechanisms utilized by these strains to survive the harsh conditions of the ISS water system. Furthermore, with an understanding of the complex nature of these polymicrobial communities, specific contamination targeting and control can be conducted to reduce the risk to crew members. Understanding these microbial species and their susceptibilities has potential application for future NASA human explorations, including those to Mars.
ContributorsKing, Olivia Grace (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, Mark (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
Description

One of the identified health risk areas for human spaceflight is infectious disease, particularly involving environmental microorganisms already found on the International Space Station (ISS). In particular, bacteria belonging to the Burkholderia cepacia complex (Bcc) which can cause human disease in those who are immunocompromised, have been identified in the

One of the identified health risk areas for human spaceflight is infectious disease, particularly involving environmental microorganisms already found on the International Space Station (ISS). In particular, bacteria belonging to the Burkholderia cepacia complex (Bcc) which can cause human disease in those who are immunocompromised, have been identified in the ISS water supply. This present study characterized the effect of spaceflight analog culture conditions on Bcc to certain physiological stresses (acid and thermal as well as intracellular survival in U927 human macrophage cells). The NASA-designed Rotating Wall Vessel (RWV) bioreactor was used as the spaceflight analogue culture system in these studies to grow Bcc bacterial cells under Low Shear Modeled Microgravity (LSMMG) conditions. Results show that LSMMG culture increased the resistance of Bcc to both acid and thermal stressors, but did not alter phagocytic uptake in 2-D monolayers of human monocytes.

ContributorsVu, Christian-Alexander (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, Mark (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05