Matching Items (82)
135447-Thumbnail Image.png
Description
This study investigates how the patient-provider relationship between lesbian, gay, and bisexual women and their healthcare providers influences their access to, utilization of, and experiences within healthcare environments. Nineteen participants, ages 18 to 34, were recruited using convenience and snowball sampling. Interviews were conducted inquiring about their health history and

This study investigates how the patient-provider relationship between lesbian, gay, and bisexual women and their healthcare providers influences their access to, utilization of, and experiences within healthcare environments. Nineteen participants, ages 18 to 34, were recruited using convenience and snowball sampling. Interviews were conducted inquiring about their health history and their experiences within the healthcare system in the context of their sexual orientation. The data collected from these interviews was used to create an analysis of the healthcare experiences of those who identify as queer. Although the original intention of the project was to chronicle the experiences of LGB women specifically, there were four non-binary gender respondents who contributed interviews. In an effort to not privilege any orientation over another, the respondents were collectively referred to as queer, given the inclusive and an encompassing nature of the term. The general conclusion of this study is that respondents most often experienced heterosexism rather than outright homophobia when accessing healthcare. If heterosexism was present within the healthcare setting, it made respondents feel uncomfortable with their providers and less likely to inform them of their sexuality even if it was medically relevant to their health outcomes. Gender, race, and,socioeconomic differences also had an effect on the patient-provider relationship. Non-binary respondents acknowledged the need for inclusion of more gender options outside of male or female on the reporting forms often seen in medical offices. By doing so, medical professionals are acknowledging their awareness and knowledge of people outside of the binary gender system, thus improving the experience of these patients. While race and socioeconomic status were less relevant to the context of this study, it was found that these factors have an affect on the patient-provider relationship. There are many suggestions for providers to improve the experiences of queer patients within the healthcare setting. This includes nonverbal indications of acknowledgement and acceptance, such as signs in the office that indicate it to be a queer friendly space. This will help in eliminating the fear and miscommunication that can often happen when a queer patient sees a practitioner for the first time. In addition, better education on medically relevant topics to queer patients, is necessary in order to eliminate disparities in health outcomes. This is particularly evident in trans health, where specialized education is necessary in order to decrease poor health outcomes in trans patients. Future directions of this study necessitate a closer look on how race and socioeconomic status have an effect on a queer patient's relationship with their provider.
Created2016-05
135200-Thumbnail Image.png
Description
Netflix has positioned itself at the forefront of the future of television with its original programming, which has been rolled out in greater and more frequent amounts just in the last couple of years. The streaming service has already experimented with creativity in ways most other shows and creators haven't,

Netflix has positioned itself at the forefront of the future of television with its original programming, which has been rolled out in greater and more frequent amounts just in the last couple of years. The streaming service has already experimented with creativity in ways most other shows and creators haven't, playing with the pacing of overall seasons as well as the length of episodes. So, too, Netflix has been at the forefront of increasing visibility for minority characters on television. Many of its shows incorporate racially diverse casts and depict lots of LGBTQ characters, a refreshingly realistic view of the world that many of its viewers have always lived in but haven't yet witnessed on television. Visibility and representation are critical concepts for analyzing minority characters on television. It is important for diverse characters to be seen, first and foremost, but also to be seen in positive or at least realistic lights. Care must be taken to avoid fulfilling stereotypes or tropes, and attention must be paid to what has happened to other characters who have come before. However, many of Netflix's portrayals of these characters, particularly bisexual characters, leave much to be desired. With the original dramas House of Cards, Hemlock Grove, Orange is the New Black, and Sense8, all of which include characters who identify as or behave bisexually, Netflix has been reluctant to use the specific word bisexual to describe characters, and many don't even identify their sexuality with a synonym for the term. Many of the bisexual characters that I identified died or were killed on the shows, and nearly all of them fulfilled stereotypes or tropes in some way. There were multiple scenes of threesomes or other distinctly kinky sexual encounters, which served to exoticize bisexuality and distance it from the more normatively viewed identities of heterosexuality and homosexuality. Ultimately, while Netflix's original programming has offered increased visibility to bisexual characters, it has yet to reflect the real community it seeks to portray. In particular, Netflix's refusal to label characters as bisexual is frustrating and limiting. It can be argued that this is a progressive move toward more ideas of sexual fluidity and a post-modern lack of sexual labels, but there are not enough depictions of identified bisexual characters on television yet for this to make sense. Until bisexual characters and their identities are not invisibilized or stigmatized, more work has to be done to ensure that bisexual people are represented fairly and accurately on television and in all media.
Created2016-05
Description

One of the identified health risk areas for human spaceflight is infectious disease, particularly involving environmental microorganisms already found on the International Space Station (ISS). In particular, bacteria belonging to the Burkholderia cepacia complex (Bcc) which can cause human disease in those who are immunocompromised, have been identified in the

One of the identified health risk areas for human spaceflight is infectious disease, particularly involving environmental microorganisms already found on the International Space Station (ISS). In particular, bacteria belonging to the Burkholderia cepacia complex (Bcc) which can cause human disease in those who are immunocompromised, have been identified in the ISS water supply. This present study characterized the effect of spaceflight analog culture conditions on Bcc to certain physiological stresses (acid and thermal as well as intracellular survival in U927 human macrophage cells). The NASA-designed Rotating Wall Vessel (RWV) bioreactor was used as the spaceflight analogue culture system in these studies to grow Bcc bacterial cells under Low Shear Modeled Microgravity (LSMMG) conditions. Results show that LSMMG culture increased the resistance of Bcc to both acid and thermal stressors, but did not alter phagocytic uptake in 2-D monolayers of human monocytes.

ContributorsVu, Christian-Alexander (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, Mark (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
187427-Thumbnail Image.png
Description
The continued rise of temperatures and extreme heat events globally is contributing to increases in mortality and morbidity in every region of the world. Urban areas are experiencing the combined effects of anthropogenic climate change and the urban heat island effect, exacerbating the risks associated with heat for urban residents.

The continued rise of temperatures and extreme heat events globally is contributing to increases in mortality and morbidity in every region of the world. Urban areas are experiencing the combined effects of anthropogenic climate change and the urban heat island effect, exacerbating the risks associated with heat for urban residents. In response, cities must make every effort to adapt, pursuing engagement in high-quality planning processes and implementing robust sets of strategies to mitigate and manage the heat. Cities are shaped by networks of plans, however, the process of systematically evaluating these plans has focused on individual plans or plan types when assessing their quality. This study combines qualitative plan quality evaluation and semi-structured interviews to assess how Vienna’s network of plans addresses heat. Two clear divides emerge when analyzing the plan network; direction-setting principles are included more often than others, and mitigation strategies are more prevalent than management strategies. These results, which are consistent across the broader plan quality evaluation literature, illuminate a clear path for Vienna to continuously improve their planning process and effectively respond to heat.
ContributorsLeyba, Bryan (Author) / Meerow, Sara (Thesis advisor) / Damyanovic, Doris (Committee member) / Hondula, David (Committee member) / Arizona State University (Publisher)
Created2023
154653-Thumbnail Image.png
Description
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative enteric pathogen that causes self-limiting gastroenteritis in healthy individuals and can cause systemic infections in those who are immunocompromised. During its natural lifecycle, S. Typhimurium encounters a wide variety of stresses it must sense and respond to in a dynamic and

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative enteric pathogen that causes self-limiting gastroenteritis in healthy individuals and can cause systemic infections in those who are immunocompromised. During its natural lifecycle, S. Typhimurium encounters a wide variety of stresses it must sense and respond to in a dynamic and coordinated fashion to induce resistance and ensure survival. Salmonella is subjected to a series of stresses that include temperature shifts, pH variability, detergent-like bile salts, oxidative environments and changes in fluid shear levels. Previously, our lab showed that cultures of S. Typhimurium grown under physiological low fluid shear (LFS) conditions similar to those encountered in the intestinal tract during infection uniquely regulates the virulence, gene expression and pathogenesis-related stress responses of this pathogen during log phase. Interestingly, the log phase Salmonella mechanosensitive responses to LFS were independent of the master stress response sigma factor, RpoS, departing from our conventional understanding of RpoS regulation. Since RpoS is a growth phase dependent regulator with increased stability in stationary phase, the current study investigated the role of RpoS in mediating pathogenesis-related stress responses in stationary phase S. Typhimurium grown under LFS and control conditions. Specifically, stationary phase responses to acid, thermal, bile and oxidative stress were assayed. To our knowledge the results from the current study demonstrate the first report that the mechanical force of LFS globally alters the S. Typhimurium χ3339 stationary phase stress response independently of RpoS to acid and bile stressors but dependently on RpoS to oxidative and thermal stress. This indicates that fluid shear-dependent differences in acid and bile stress responses are regulated by alternative pathway(s) in S. Typhimurium, were the oxidative and thermal stress responses are regulated through RpoS in LFS conditions. Results from this study further highlight how bacterial mechanosensation may be important in promoting niche recognition and adaptation in the mammalian host during infection, and may lead to characterization of previously unidentified pathogenesis strategies.
ContributorsCrenshaw, Keith (Author) / Nickerson, Cheryl A. (Thesis advisor) / Barrila, Jennifer (Thesis advisor) / Ott, C. (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2016
154601-Thumbnail Image.png
Description
The emergence of invasive non-Typhoidal Salmonella (iNTS) infections belonging to sequence type (ST) 313 are associated with severe bacteremia and high mortality in sub-Saharan Africa. Distinct features of ST313 strains include resistance to multiple antibiotics, extensive genomic degradation, and atypical clinical diagnosis including bloodstream infections, respiratory symptoms, and fever. Herein,

The emergence of invasive non-Typhoidal Salmonella (iNTS) infections belonging to sequence type (ST) 313 are associated with severe bacteremia and high mortality in sub-Saharan Africa. Distinct features of ST313 strains include resistance to multiple antibiotics, extensive genomic degradation, and atypical clinical diagnosis including bloodstream infections, respiratory symptoms, and fever. Herein, I report the use of dynamic bioreactor technology to profile the impact of physiological fluid shear levels on the pathogenesis-related responses of ST313 pathovar, 5579. I show that culture of 5579 under these conditions induces profoundly different pathogenesis-related phenotypes than those normally observed when cultures are grown conventionally. Surprisingly, in response to physiological fluid shear, 5579 exhibited positive swimming motility, which was unexpected, since this strain was initially thought to be non-motile. Moreover, fluid shear altered the resistance of 5579 to acid, oxidative and bile stress, as well as its ability to colonize human colonic epithelial cells. This work leverages from and advances studies over the past 16 years in the Nickerson lab, which are at the forefront of bacterial mechanosensation and further demonstrates that bacterial pathogens are “hardwired” to respond to the force of fluid shear in ways that are not observed during conventional culture, and stresses the importance of mimicking the dynamic physical force microenvironment when studying host-pathogen interactions. The results from this study lay the foundation for future work to determine the underlying mechanisms operative in 5579 that are responsible for these phenotypic observations.
ContributorsCastro, Christian (Author) / Nickerson, Cheryl A. (Thesis advisor) / Ott, C. Mark (Committee member) / Roland, Kenneth (Committee member) / Barrila, Jennifer (Committee member) / Arizona State University (Publisher)
Created2016
153589-Thumbnail Image.png
Description
Invasive salmonellosis caused by Salmonella enterica serovar Typhimurium ST313 is a major health crisis in sub-Saharan Africa, with multidrug resistance and atypical clinical presentation challenging current treatment regimens and resulting in high mortality. Moreover, the increased risk of spreading ST313 pathovars worldwide is of major concern, given global public transportation

Invasive salmonellosis caused by Salmonella enterica serovar Typhimurium ST313 is a major health crisis in sub-Saharan Africa, with multidrug resistance and atypical clinical presentation challenging current treatment regimens and resulting in high mortality. Moreover, the increased risk of spreading ST313 pathovars worldwide is of major concern, given global public transportation networks and increased populations of immunocompromised individuals (as a result of HIV infection, drug use, cancer therapy, aging, etc). While it is unclear as to how Salmonella ST313 strains cause invasive disease in humans, it is intriguing that the genomic profile of some of these pathovars indicates key differences between classic Typhimurium (broad host range), but similarities to human-specific typhoidal Salmonella Typhi and Paratyphi. In an effort to advance fundamental understanding of the pathogenesis mechanisms of ST313 in humans, I report characterization of the molecular genetic, phenotypic and virulence profiles of D23580 (a representative ST313 strain). Preliminary studies to characterize D23580 virulence, baseline stress responses, and biochemical profiles, and in vitro infection profiles in human surrogate 3-D tissue culture models were done using conventional bacterial culture conditions; while subsequent studies integrated a range of incrementally increasing fluid shear levels relevant to those naturally encountered by D23580 in the infected host to understand the impact of biomechanical forces in altering these characteristics. In response to culture of D23580 under these conditions, distinct differences in transcriptional biosignatures, pathogenesis-related stress responses, in vitro infection profiles and in vivo virulence in mice were observed as compared to those of classic Salmonella pathovars tested.

Collectively, this work represents the first characterization of in vivo virulence and in vitro pathogenesis properties of D23580, the latter using advanced human surrogate models that mimic key aspects of the parental tissue. Results from these studies highlight the importance of studying infectious diseases using an integrated approach that combines actions of biological and physical networks that mimic the host-pathogen microenvironment and regulate pathogen responses.
ContributorsYang, Jiseon (Author) / Nickerson, Cheryl A. (Thesis advisor) / Chang, Yung (Committee member) / Stout, Valerie (Committee member) / Ott, C Mark (Committee member) / Roland, Kenneth (Committee member) / Barrila, Jennifer (Committee member) / Arizona State University (Publisher)
Created2015
155874-Thumbnail Image.png
Description
In sub-Saharan Africa, an invasive form of nontyphoidal Salmonella (iNTS) belonging to sequence type (ST)313 has emerged as a major public health concern causing widespread bacteremia and mortality in children with malaria and adults with HIV. Clinically, ST313 pathovars are characterized by the absence of gastroenteritis, which is commonly found

In sub-Saharan Africa, an invasive form of nontyphoidal Salmonella (iNTS) belonging to sequence type (ST)313 has emerged as a major public health concern causing widespread bacteremia and mortality in children with malaria and adults with HIV. Clinically, ST313 pathovars are characterized by the absence of gastroenteritis, which is commonly found in “classical” nontyphoidal Salmonella (NTS), along with multidrug resistance, pseudogene formation, and chromosome degradation. There is an urgent need to understand the biological and physical factors that regulate the disease causing properties of ST313 strains. Previous studies from our lab using dynamic Rotating Wall Vessel (RWV) bioreactor technology and “classical” NTS strain χ3339 showed that physiological fluid shear regulates gene expression, stress responses and virulence in unexpected ways that are not observed using conventional shake and static flask conditions, and in a very different manner as compared to ST313 strain D23580. Leveraging from these findings, the current study was the first to report the effect of fluid shear on the pathogenesis-related stress responses of S. Typhimurium ST313 strain A130, which evolved earlier than D23580 within the ST313 clade. A130 displayed enhanced resistance to acid, oxidative and bile stresses when cultured in the high fluid shear (HFS) control condition relative to the low fluid shear (LFS) condition in stationary phase using Lennox Broth (LB) as the culture medium. The greatest magnitude of the survival benefit conferred by high fluid shear was observed in response to oxidative and acid stresses. No differences were observed for thermal and osmotic stresses. Based on previous findings from our laboratory, we also assessed how the addition of phosphate or magnesium ions to the culture medium altered the acid or oxidative stress responses of A130 grown in the RWV. Addition of either

phosphate or magnesium to the culture medium abrogated the fluid shear-related differences observed for A130 in LB medium for the acid or oxidative stress responses, respectively. Collectively, these findings indicate that like other Salmonella strains assessed thus far by our team, A130 responds to differences in physiological fluid shear, and that ion concentrations can modulate those responses.
ContributorsGutierrez-Jensen, Ami Dave (Author) / Nickerson, Cheryl A. (Thesis advisor) / Barrila, Jennifer (Thesis advisor) / Ott, C. M. (Committee member) / Roland, Kenneth (Committee member) / Arizona State University (Publisher)
Created2017
157913-Thumbnail Image.png
Description
Understanding how microorganisms adapt and respond to the microgravity environment of spaceflight is important for the function and integrity of onboard life support systems, astronaut health and mission success. Microbial contamination of spacecraft Environmental Life Support Systems (ECLSS), including the potable water system, are well documented and have caused major

Understanding how microorganisms adapt and respond to the microgravity environment of spaceflight is important for the function and integrity of onboard life support systems, astronaut health and mission success. Microbial contamination of spacecraft Environmental Life Support Systems (ECLSS), including the potable water system, are well documented and have caused major disruption to spaceflight missions. The potable water system on the International Space Station (ISS) uses recycled wastewater purified by multiple processes so it is safe for astronaut consumption and personal hygiene. However, despite stringent antimicrobial treatments, multiple bacterial species and biofilms have been recovered from this potable water system. This finding raises concern for crew health risks, vehicle operations and ECLSS system integrity during exploration missions. These concerns are further heightened given that 1) potential pathogens have been isolated from the ISS potable water system, 2) the immune response of astronauts is blunted during spaceflight, 3) spaceflight induces unexpected alterations in microbial responses, including growth and biofilm formation, antimicrobial resistance, stress responses, and virulence, and 4) different microbial phenotypes are often observed between reductionistic pure cultures as compared to more complex multispecies co-cultures, the latter of which are more representative of natural environmental conditions. To advance the understanding of the impact of microgravity on microbial responses that could negatively impact spacecraft ECLSS systems and crew health, this study characterized a range of phenotypic profiles in both pure and co-cultures of bacterial isolates collected from the ISS potable water system between 2009 and 2014. Microbial responses profiled included population dynamics, resistance to silver, biofilm formation, and in vitro colonization of intestinal epithelial cells. Growth characteristics and antibiotic sensitivities for bacterial strains were evaluated to develop selective and/or differential media that allow for isolation of a pure culture from co-cultures, which was critical for the success of this study. Bacterial co-culture experiments were performed using dynamic Rotating Wall Vessel (RWV) bioreactors under spaceflight analogue (Low Shear Modeled Microgravity/LSMMG) and control conditions. These experiments indicated changes in fluid shear have minimal impact on strain recovery. The antimicrobial efficacy of silver on both sessile co-cultures, grown on 316L stainless steel coupons, and planktonic co-cultures showed that silver did not uniformly reduce the recovery of all strains; however, it had a stronger antimicrobial effect on biofilm cultures than planktonic cultures. The impact of silver on the ability of RWV cultured planktonic and biofilm bacterial co-cultures to colonize human intestinal epithelial cells showed that, those strains which were impacted by silver treatment, often increased adherence to the monolayer. Results from these studies provide insight into the dynamics of polymicrobial community interactions, biofilm formation and survival mechanisms of ISS potable water isolates, with potential application for future design of ECLSS systems for sustainable human space exploration.
ContributorsKing, Olivia G (Author) / Nickerson, Cheryl (Thesis advisor) / Barrila, Jennifer (Committee member) / Ott, C (Committee member) / Yang, Jiseon (Committee member) / Arizona State University (Publisher)
Created2019
Description
The discovery that mechanical forces regulate microbial virulence, stress responses and gene expression was made using log phase cultures of Salmonella Typhimurium (S. Typhimurium) grown under low fluid shear (LFS) conditions relevant to those encountered in the intestine. However, there has been limited characterization of LFS on other growth phases.

The discovery that mechanical forces regulate microbial virulence, stress responses and gene expression was made using log phase cultures of Salmonella Typhimurium (S. Typhimurium) grown under low fluid shear (LFS) conditions relevant to those encountered in the intestine. However, there has been limited characterization of LFS on other growth phases. To advance the growth-phase dependent understanding of the effect of LFS on S. Typhimurium pathogenicity, this dissertation characterized the effect of LFS on the transcriptomic and phenotypic responses in both stationary and lag phase cultures. In response to LFS, stationary phase cultures exhibited alterations in gene expression associated with metabolism, transport, secretion and stress responses (acid, bile salts, oxidative, and thermal stressors), motility, and colonization of intestinal epithelium (adherence, invasion and intracellular survival). Many of these characteristics are known to be regulated by the stationary phase general stress response regulator, RNA polymerase sigma factor S (RpoS), when S. Typhimurium is grown under conventional conditions. Surprisingly, the stationary phase phenotypic LFS stress response to acid and bile salts, colonization of human intestinal epithelial cells, and swimming motility was not dependent on RpoS. Lag phase cultures exhibited intriguing differences in their LFS regulated transcriptomic and phenotypic profiles as compared to stationary phase cultures, including LFS-dependent regulation of gene expression, adherence to intestinal epithelial cells, and high thermal stress. Furthermore, the addition of cell-free conditioned supernatants derived from either stationary phase LFS or Control cultures modulated the gene expression of lag phase cultures in a manner that differed from either growth phase, however, these supernatants did not modulate the phenotypic responses of lag phase cultures. Collectively, these results demonstrated that S. Typhimurium can sense and respond to LFS as early as lag phase, albeit in a limited fashion, and that the lag phase transcriptomic and phenotypic responses differ from those in stationary phase, which hold important implications for the lifecycle of this pathogen during the infection process.
ContributorsFranco, Karla Paola (Author) / Nikerson, Cheryl A (Thesis advisor) / Bean, Heather D (Committee member) / Stout, Valerie (Committee member) / Ott, C Mark (Committee member) / Barrila, Jennifer (Committee member) / Arizona State University (Publisher)
Created2020