Matching Items (11,939)
Filtering by

Clear all filters

151712-Thumbnail Image.png
Description
Niche variation among sexes and life stages within a population has been documented in many species, yet few studies have investigated niche variation within demographic groups or across ecological contexts. We examined the extent to which pregnant California sea lions (Zalophus californianus) at each of three breeding colonies target alternative

Niche variation among sexes and life stages within a population has been documented in many species, yet few studies have investigated niche variation within demographic groups or across ecological contexts. We examined the extent to which pregnant California sea lions (Zalophus californianus) at each of three breeding colonies target alternative prey resources and habitats. The three colonies are distributed across distinct regions of the Gulf of California, Mexico and have divergent population dynamics. We compared the nature of niche variation among colonies and investigated the fitness consequences of different foraging strategies within each colony. We analyzed the δ13C and δ15N values from fur collected from 206 suckling pups to characterize relative maternal foraging locations (δ13C) and trophic levels (δ15N) during the metabolically demanding late stages of gestation and lactation that occur simultaneously in California sea lions. The δ13C and δ15N values were regressed against pup body condition index values to compare the relative individual-level fitness benefits of different maternal foraging strategies. We found that the nature and extent of niche variation differed among colonies. Niche variation was most pronounced at the two largest colonies that appear to experience the highest levels of intraspecific competition and the variation was consistent with habitat features. One colony (Granito) displayed two distinct foraging groups with indistinguishable median pup body condition values, whereas the second (San Jorge) exhibited continuous niche variation and pup body condition varied in relation to maternal foraging location and trophic level, suggesting disparities among alternative foraging strategies. For the smallest colony (Los Islotes), females occupy similar niches with a few outliers. Body condition values of pups at this colony were most variable, but did not vary with maternal foraging strategy. Our results provide evidence for intrapopulation niche variation among demographically similar individuals during a period of high metabolic stress and reproductive importance. This work suggests possible fitness benefits conferred by alternative foraging strategies, and calls into question the common assumption that members of a population are ecologically equivalent. Future research aimed at understanding animal foraging strategies should consider the nature and extent of niche variation in the context of local ecological conditions.
ContributorsCrawford, Tara Gancos (Author) / Gerber, Leah R. (Thesis advisor) / Ogle, Kiona (Committee member) / Kurle, Carolyn M (Committee member) / Arizona State University (Publisher)
Created2013
152746-Thumbnail Image.png
Description
Many wildlife species that are essential to human livelihoods are targeted with the aim of extracting short-term benefits. Overexploitation, resulting from failed common-pool resource governance, has endangered the sustainability of large animal species, in particular. Rights-based approaches to wildlife conservation offer a possible path forward. In a wildlife market, property

Many wildlife species that are essential to human livelihoods are targeted with the aim of extracting short-term benefits. Overexploitation, resulting from failed common-pool resource governance, has endangered the sustainability of large animal species, in particular. Rights-based approaches to wildlife conservation offer a possible path forward. In a wildlife market, property rights, or shares of an animal population, are allocated to resource users with interests in either harvest or preservation. Here, I apply the Social-Ecological Systems (SES) framework (Ostrom, 2009) to identify the conditions under which the ecological, social, and economic outcomes of a conservation market are improved compared to the status quo. I first consider three case studies (Bighorn sheep, white rhino, and Atlantic Bluefin tuna) all of which employ different market mechanisms. Based on the SES framework and these case studies, I then evaluate whether markets are a feasible management option for other socially and ecologically significant species, such as whales (and similar highly migratory species), and whether market instruments are capable of accommodating non-consumptive environmental values in natural resource decision making. My results suggest that spatial and temporal distribution, ethical and cultural relevance, and institutional histories compatible with commodification of wildlife are key SES subsystem variables. Successful conservation markets for cross-boundary marine species, such as whales, sea turtles, and sharks, will require intergovernmental agreements.
ContributorsSturm, Melanie (Author) / Minteer, Ben A (Thesis advisor) / Gerber, Leah R. (Thesis advisor) / Perrings, Charles (Committee member) / York, Abigail (Committee member) / Arizona State University (Publisher)
Created2014
153097-Thumbnail Image.png
Description
This dissertation consists of three substantive chapters. The first substantive chapter investigates the premature harvesting problem in fisheries. Traditionally, yield-per-recruit analysis has been used to both assess and address the premature harvesting of fish stocks. However, the fact that fish size often affects the unit price suggests that this approach

This dissertation consists of three substantive chapters. The first substantive chapter investigates the premature harvesting problem in fisheries. Traditionally, yield-per-recruit analysis has been used to both assess and address the premature harvesting of fish stocks. However, the fact that fish size often affects the unit price suggests that this approach may be inadequate. In this chapter, I first synthesize the conventional yield-per-recruit analysis, and then extend this conventional approach by incorporating a size-price function for a revenue-per-recruit analysis. An optimal control approach is then used to derive a general bioeconomic solution for the optimal harvesting of a short-lived single cohort. This approach prevents economically premature harvesting and provides an "optimal economic yield". By comparing the yield- and revenue-per-recruit management strategies with the bioeconomic management strategy, I am able to test the economic efficiency of the conventional yield-per-recruit approach. This is illustrated with a numerical study. It shows that a bioeconomic strategy can significantly improve economic welfare compared with the yield-per-recruit strategy, particularly in the face of high natural mortality. Nevertheless, I find that harvesting on a revenue-per-recruit basis improves management policy and can generate a rent that is close to that from bioeconomic analysis, in particular when the natural mortality is relatively low.

The second substantive chapter explores the conservation potential of a whale permit market under bounded economic uncertainty. Pro- and anti-whaling stakeholders are concerned about a recently proposed, "cap and trade" system for managing the global harvest of whales. Supporters argue that such an approach represents a novel solution to the current gridlock in international whale management. In addition to ethical objections, opponents worry that uncertainty about demand for whale-based products and the environmental benefits of conservation may make it difficult to predict the outcome of a whale share market. In this study, I use population and economic data for minke whales to examine the potential ecological consequences of the establishment of a whale permit market in Norway under bounded but significant economic uncertainty. A bioeconomic model is developed to evaluate the influence of economic uncertainties associated with pro- and anti- whaling demands on long-run steady state whale population size, harvest, and potential allocation. The results indicate that these economic uncertainties, in particular on the conservation demand side, play an important role in determining the steady state ecological outcome of a whale share market. A key finding is that while a whale share market has the potential to yield a wide range of allocations between conservation and whaling interests - outcomes in which conservationists effectively "buy out" the whaling industry seem most likely.

The third substantive chapter examines the sea lice externality between farmed fisheries and wild fisheries. A central issue in the debate over the effect of fish farming on the wild fisheries is the nature of sea lice population dynamics and the wild juvenile mortality rate induced by sea lice infection. This study develops a bioeconomic model that integrates sea lice population dynamics, fish population dynamics, aquaculture and wild capture salmon fisheries in an optimal control framework. It provides a tool to investigate sea lice control policy from the standpoint both of private aquaculture producers and wild fishery managers by considering the sea lice infection externality between farmed and wild fisheries. Numerical results suggest that the state trajectory paths may be quite different under different management regimes, but approach the same steady state. Although the difference in economic benefits is not significant in the particular case considered due to the low value of the wild fishery, I investigate the possibility of levying a tax on aquaculture production for correcting the sea lice externality generated by fish farms.
ContributorsHuang, Biao (Author) / Abbott, Joshua K (Thesis advisor) / Perrings, Charles (Thesis advisor) / Gerber, Leah R. (Committee member) / Muneepeerakul, Rachata (Committee member) / Schoon, Michael (Committee member) / Arizona State University (Publisher)
Created2014
151061-Thumbnail Image.png
Description
Despite years of effort, the field of conservation biology still struggles to incorporate theories of animal behavior. I introduce in Chapter I the issues surrounding the disconnect between behavioral ecology and conservation biology, and propose the use of behavioral knowledge in population viability analysis. In Chapter II, I develop a

Despite years of effort, the field of conservation biology still struggles to incorporate theories of animal behavior. I introduce in Chapter I the issues surrounding the disconnect between behavioral ecology and conservation biology, and propose the use of behavioral knowledge in population viability analysis. In Chapter II, I develop a framework that uses three strategies for incorporating behavior into demographic models, outline the costs of each strategy through decision analysis, and build on previous work in behavioral ecology and demography. First, relevant behavioral mechanisms should be included in demographic models used for conservation decision-making. Second, I propose rapid behavioral assessment as a useful tool to approximate demographic rates through regression of demographic phenomena on observations of related behaviors. This technique provides behaviorally estimated parameters that may be applied to population viability analysis for use in management. Finally, behavioral indices can be used as warning signs of population decline. The proposed framework combines each strategy through decision analysis to provide quantitative rules that determine when incorporating aspects of conservation behavior may be beneficial to management. Chapter III applies this technique to estimate birthrate in a colony of California sea lions in the Gulf of California, Mexico. This study includes a cost analysis of the behavioral and traditional parameter estimation techniques. I then provide in Chapter IV practical recommendations for applying this framework to management programs along with general guidelines for the development of rapid behavioral assessment.
ContributorsWildermuth, Robert (Author) / Gerber, Leah R. (Thesis advisor) / Collins, James (Committee member) / Smith, Andrew (Committee member) / Arizona State University (Publisher)
Created2012
151122-Thumbnail Image.png
Description
Parental care provides many benefits to offspring. One widely realized benefit is enhanced regulation of offspring's thermal environment. The developmental thermal environment during development can be optimized behaviorally through nest site selection and brooding, and it can be further enhanced by physiological heat production. In fact, enhancement of the developmental

Parental care provides many benefits to offspring. One widely realized benefit is enhanced regulation of offspring's thermal environment. The developmental thermal environment during development can be optimized behaviorally through nest site selection and brooding, and it can be further enhanced by physiological heat production. In fact, enhancement of the developmental thermal environment has been proposed as the initial driving force for the evolution of endothermy in bird and mammals. I used pythons (Squamata: Pythonidae) to expand existing knowledge of behavioral and physiological parental tactics used to regulate offspring thermal environment. I first demonstrated that brooding behavior in the Children's python (Antaresia childreni) is largely driven by internal mechanisms, similar to solitary birds, suggesting that the early evolution of the parent-offspring association was probably hormonally driven. Two species of python are known to be facultatively thermogenic (i.e., are endothermic during reproduction). I expand current knowledge of thermogenesis in Burmese pythons (Python molurus) by demonstrating that females use their own body temperature to modulate thermogenesis. Although pythons are commonly cited as thermogenic, the actual extent of thermogenesis within the family Pythonidae is unknown. Thus, I assessed the thermogenic capability of five previously unstudied species of python to aid in understanding phylogenetic, morphological, and distributional influences on thermogenesis in pythons. Results suggest that facultative thermogenesis is likely rare among pythons. To understand why it is rare, I used an artificial model to demonstrate that energetic costs to the female likely outweigh thermal benefits to the clutch in species that do not inhabit cooler latitudes or lack large energy reserves. In combination with other studies, these results show that facultative thermogenesis during brooding in pythons likely requires particular ecological and physiological factors for its evolution.
ContributorsBrashears, Jake (Author) / DeNardo, Dale (Thesis advisor) / Harrison, Jon (Committee member) / Deviche, Pierre (Committee member) / McGraw, Kevin (Committee member) / Smith, Andrew (Committee member) / Arizona State University (Publisher)
Created2012
149091-Thumbnail Image.png
Description

Geology and its tangential studies, collectively known and referred to in this thesis as geosciences, have been paramount to the transformation and advancement of society, fundamentally changing the way we view, interact and live with the surrounding natural and built environment. It is important to recognize the value and importance

Geology and its tangential studies, collectively known and referred to in this thesis as geosciences, have been paramount to the transformation and advancement of society, fundamentally changing the way we view, interact and live with the surrounding natural and built environment. It is important to recognize the value and importance of this interdisciplinary scientific field while reconciling its ties to imperial and colonizing extractive systems which have led to harmful and invasive endeavors. This intersection among geosciences, (environmental) justice studies, and decolonization is intended to promote inclusive pedagogical models through just and equitable methodologies and frameworks as to prevent further injustices and promote recognition and healing of old wounds. By utilizing decolonial frameworks and highlighting the voices of peoples from colonized and exploited landscapes, this annotated syllabus tackles the issues previously described while proposing solutions involving place-based education and the recentering of land within geoscience pedagogical models. (abstract)

ContributorsReed, Cameron E (Author) / Richter, Jennifer (Thesis director) / Semken, Steven (Committee member) / School of Earth and Space Exploration (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149092-Thumbnail Image.png
Description

The ASU COVID-19 testing lab process was developed to operate as the primary testing site for all ASU staff, students, and specified external individuals. Tests are collected at various collection sites, including a walk-in site at the SDFC and various drive-up sites on campus; analysis is conducted on ASU campus

The ASU COVID-19 testing lab process was developed to operate as the primary testing site for all ASU staff, students, and specified external individuals. Tests are collected at various collection sites, including a walk-in site at the SDFC and various drive-up sites on campus; analysis is conducted on ASU campus and results are distributed virtually to all patients via the Health Services patient portal. The following is a literature review on past implementations of various process improvement techniques and how they can be applied to the ABCTL testing process to achieve laboratory goals. (abstract)

ContributorsKrell, Abby Elizabeth (Co-author) / Bruner, Ashley (Co-author) / Ramesh, Frankincense (Co-author) / Lewis, Gabriel (Co-author) / Barwey, Ishna (Co-author) / Myers, Jack (Co-author) / Hymer, William (Co-author) / Reagan, Sage (Co-author) / Compton, Carolyn (Thesis director) / McCarville, Daniel R. (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
154182-Thumbnail Image.png
Description
Small-scale fisheries are globally ubiquitous, employing more than 99% of the world’s fishers and providing over half of the world’s seafood. However, small-scale fisheries face many management challenges including declining catches, inadequate resources and infrastructure, and overcapacity. Baja California Sur, Mexico (BCS) is a region with diverse small-scale fisheries; these

Small-scale fisheries are globally ubiquitous, employing more than 99% of the world’s fishers and providing over half of the world’s seafood. However, small-scale fisheries face many management challenges including declining catches, inadequate resources and infrastructure, and overcapacity. Baja California Sur, Mexico (BCS) is a region with diverse small-scale fisheries; these fisheries are intense, poorly regulated, and overlap with foraging hot spots of endangered sea turtles. In partnership with researchers, fishers, managers, and practitioners from Mexico and the United States, I documented bycatch rates of loggerhead turtles at BCS that represent the highest known megafauna bycatch rates worldwide. Concurrently, I conducted a literature review that determined gear modifications were generally more successful than other commonly used fisheries management strategies for mitigating bycatch of vulnerable megafauna including seabirds, marine mammals, and sea turtles. I then applied these results by partnering with researchers, local fishers, and Mexico’s federal fisheries science agency to develop and test two gear modifications (i.e. buoyless and illuminated nets) in operating net fisheries at BCS as potential solutions to reduce bycatch of endangered sea turtles, improve fisheries sustainability, and maintain fisher livelihoods. I found that buoyless nets significantly reduced mean turtle bycatch rates by 68% while maintaining target catch rates and composition. By contrast, illuminated nets did not significantly reduce turtle bycatch rates across day-night periods, although they reduced mean turtle bycatch rates by 50% at night. Illuminated nets, however, significantly reduced mean rates of total bycatch biomass by 34% across day-night periods while maintaining target fish catch and market value. I conclude with a policy analysis of the unilateral identification of Mexico by the U.S. State Department under section 610 of the Magnusson-Stevens Fishery Conservation and Management Act for failure to manage bycatch of loggerhead turtles at BCS. Taken together, the gear modifications developed and tested here represent promising bycatch mitigation solutions with strong potential for commercial adoption, but fleet-wide conversion to more selective and turtle-friendly gear (e.g. hook and line and/or traps) at BCS, coupled with coordinated international conservation action, is ultimately needed to eliminate sea turtle bycatch and further improve fisheries sustainability.
ContributorsSenko, Jesse (Author) / Smith, Andrew (Thesis advisor) / Boggess, May (Committee member) / Chhetri, Nalini (Committee member) / Jenkins, Lekelia (Committee member) / Minteer, Ben (Committee member) / Arizona State University (Publisher)
Created2015
156242-Thumbnail Image.png
Description
Habitat fragmentation, the loss of habitat in the landscape and spatial isolation of remaining habitat patches, has long been considered a serious threat to biodiversity. However, the study of habitat fragmentation is fraught with definitional and conceptual challenges. Specifically, a multi-scale perspective is needed to address apparent disagreements between landscape-

Habitat fragmentation, the loss of habitat in the landscape and spatial isolation of remaining habitat patches, has long been considered a serious threat to biodiversity. However, the study of habitat fragmentation is fraught with definitional and conceptual challenges. Specifically, a multi-scale perspective is needed to address apparent disagreements between landscape- and patch-based studies that have caused significant uncertainty concerning fragmentation’s effects on biological communities. Here I tested the hypothesis that habitat fragmentation alters biological communities by creating hierarchically nested selective pressures across plot-, patch-, and landscape-scales using woody plant community datasets from Thousand Island Lake, China. In this archipelago edge-effects had little impact on species-diversity. However, the amount of habitat in the surrounding landscape had a positive effect on species richness at the patch-scale and sets of small islands accumulated species faster than sets of large islands of equal total size at the landscape-scale. In contrast, at the functional-level edge-effects decreased the proportion of shade-tolerant trees, island-effects increased the proportion of shade- intolerant trees, and these two processes interacted to alter the functional composition of the regional pool when the total amount of habitat in the landscape was low. By observing interdependent fragmentation-mediated effects at each scale, I found support for the hypothesis that habitat fragmentation’s effects are hierarchically structured.
ContributorsWilson, Maxwell (Author) / Wu, Jianguo (Thesis advisor) / Smith, Andrew (Committee member) / Hall, Sharon (Committee member) / Jiang, Lin (Committee member) / Cease, Arianne (Committee member) / Arizona State University (Publisher)
Created2018
133340-Thumbnail Image.png
Description
For as long as humans have been working, they have been looking for ways to get that work done better, faster, and more efficient. Over the course of human history, mankind has created innumerable spectacular inventions, all with the goal of making the economy and daily life more efficient. Today,

For as long as humans have been working, they have been looking for ways to get that work done better, faster, and more efficient. Over the course of human history, mankind has created innumerable spectacular inventions, all with the goal of making the economy and daily life more efficient. Today, innovations and technological advancements are happening at a pace like never seen before, and technology like automation and artificial intelligence are poised to once again fundamentally alter the way people live and work in society. Whether society is prepared or not, robots are coming to replace human labor, and they are coming fast. In many areas artificial intelligence has disrupted entire industries of the economy. As people continue to make advancements in artificial intelligence, more industries will be disturbed, more jobs will be lost, and entirely new industries and professions will be created in their wake. The future of the economy and society will be determined by how humans adapt to the rapid innovations that are taking place every single day. In this paper I will examine the extent to which automation will take the place of human labor in the future, project the potential effect of automation to future unemployment, and what individuals and society will need to do to adapt to keep pace with rapidly advancing technology. I will also look at the history of automation in the economy. For centuries humans have been advancing technology to make their everyday work more productive and efficient, and for centuries this has forced humans to adapt to the modern technology through things like training and education. The thesis will additionally examine the ways in which the U.S. education system will have to adapt to meet the demands of the advancing economy, and how job retraining programs must be modernized to prepare workers for the changing economy.
ContributorsCunningham, Reed P. (Author) / DeSerpa, Allan (Thesis director) / Haglin, Brett (Committee member) / School of International Letters and Cultures (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05