Matching Items (13,322)
Filtering by

Clear all filters

152901-Thumbnail Image.png
Description
This thesis focuses on sequencing questions in a way that provides students with manageable steps to understand some of the fundamental concepts in discrete mathematics. The questions are aimed at younger students (middle and high school aged) with the goal of helping young students, who have likely never seen discrete

This thesis focuses on sequencing questions in a way that provides students with manageable steps to understand some of the fundamental concepts in discrete mathematics. The questions are aimed at younger students (middle and high school aged) with the goal of helping young students, who have likely never seen discrete mathematics, to learn through guided discovery. Chapter 2 is the bulk of this thesis as it provides questions, hints, solutions, as well as a brief discussion of each question. In the discussions following the questions, I have attempted to illustrate some relationships between the current question and previous questions, explain the learning goals of that question, as well as point out possible flaws in students' thinking or point out ways to explore this topic further. Chapter 3 provides additional questions with hints and solutions, but no discussion. Many of the questions in Chapter 3 contain ideas similar to questions in Chapter 2, but also illustrate how versatile discrete mathematics topics are. Chapter 4 focuses on possible future directions. The overall framework for the questions is that a student is hosting a birthday party, and all of the questions are ones that might actually come up in party planning. The purpose of putting it in this setting is to make the questions seem more coherent and less arbitrary or forced.
ContributorsBell, Stephanie (Author) / Fishel, Susana (Thesis advisor) / Hurlbert, Glenn (Committee member) / Quigg, John (Committee member) / Arizona State University (Publisher)
Created2014
152531-Thumbnail Image.png
Description
Persistence theory provides a mathematically rigorous answer to the question of population survival by establishing an initial-condition- independent positive lower bound for the long-term value of the population size. This study focuses on the persistence of discrete semiflows in infinite-dimensional state spaces that model the year-to-year dynamics of structured populations.

Persistence theory provides a mathematically rigorous answer to the question of population survival by establishing an initial-condition- independent positive lower bound for the long-term value of the population size. This study focuses on the persistence of discrete semiflows in infinite-dimensional state spaces that model the year-to-year dynamics of structured populations. The map which encapsulates the population development from one year to the next is approximated at the origin (the extinction state) by a linear or homogeneous map. The (cone) spectral radius of this approximating map is the threshold between extinction and persistence. General persistence results are applied to three particular models: a size-structured plant population model, a diffusion model (with both Neumann and Dirichlet boundary conditions) for a dispersing population of males and females that only mate and reproduce once during a very short season, and a rank-structured model for a population of males and females.
ContributorsJin, Wen (Author) / Thieme, Horst (Thesis advisor) / Milner, Fabio (Committee member) / Quigg, John (Committee member) / Smith, Hal (Committee member) / Spielberg, John (Committee member) / Arizona State University (Publisher)
Created2014
149730-Thumbnail Image.png
Description
Nonlinear dispersive equations model nonlinear waves in a wide range of physical and mathematics contexts. They reinforce or dissipate effects of linear dispersion and nonlinear interactions, and thus, may be of a focusing or defocusing nature. The nonlinear Schrödinger equation or NLS is an example of such equations. It appears

Nonlinear dispersive equations model nonlinear waves in a wide range of physical and mathematics contexts. They reinforce or dissipate effects of linear dispersion and nonlinear interactions, and thus, may be of a focusing or defocusing nature. The nonlinear Schrödinger equation or NLS is an example of such equations. It appears as a model in hydrodynamics, nonlinear optics, quantum condensates, heat pulses in solids and various other nonlinear instability phenomena. In mathematics, one of the interests is to look at the wave interaction: waves propagation with different speeds and/or different directions produces either small perturbations comparable with linear behavior, or creates solitary waves, or even leads to singular solutions. This dissertation studies the global behavior of finite energy solutions to the $d$-dimensional focusing NLS equation, $i partial _t u+Delta u+ |u|^{p-1}u=0, $ with initial data $u_0in H^1,; x in Rn$; the nonlinearity power $p$ and the dimension $d$ are chosen so that the scaling index $s=frac{d}{2}-frac{2}{p-1}$ is between 0 and 1, thus, the NLS is mass-supercritical $(s>0)$ and energy-subcritical $(s<1).$ For solutions with $ME[u_0]<1$ ($ME[u_0]$ stands for an invariant and conserved quantity in terms of the mass and energy of $u_0$), a sharp threshold for scattering and blowup is given. Namely, if the renormalized gradient $g_u$ of a solution $u$ to NLS is initially less than 1, i.e., $g_u(0)<1,$ then the solution exists globally in time and scatters in $H^1$ (approaches some linear Schr"odinger evolution as $ttopminfty$); if the renormalized gradient $g_u(0)>1,$ then the solution exhibits a blowup behavior, that is, either a finite time blowup occurs, or there is a divergence of $H^1$ norm in infinite time. This work generalizes the results for the 3d cubic NLS obtained in a series of papers by Holmer-Roudenko and Duyckaerts-Holmer-Roudenko with the key ingredients, the concentration compactness and localized variance, developed in the context of the energy-critical NLS and Nonlinear Wave equations by Kenig and Merle. One of the difficulties is fractional powers of nonlinearities which are overcome by considering Besov-Strichartz estimates and various fractional differentiation rules.
ContributorsGuevara, Cristi Darley (Author) / Roudenko, Svetlana (Thesis advisor) / Castillo_Chavez, Carlos (Committee member) / Jones, Donald (Committee member) / Mahalov, Alex (Committee member) / Suslov, Sergei (Committee member) / Arizona State University (Publisher)
Created2011
149906-Thumbnail Image.png
Description
In this thesis, I investigate the C*-algebras and related constructions that arise from combinatorial structures such as directed graphs and their generalizations. I give a complete characterization of the C*-correspondences associated to directed graphs as well as results about obstructions to a similar characterization of these objects for generalizations of

In this thesis, I investigate the C*-algebras and related constructions that arise from combinatorial structures such as directed graphs and their generalizations. I give a complete characterization of the C*-correspondences associated to directed graphs as well as results about obstructions to a similar characterization of these objects for generalizations of directed graphs. Viewing the higher-dimensional analogues of directed graphs through the lens of product systems, I give a rigorous proof that topological k-graphs are essentially product systems over N^k of topological graphs. I introduce a "compactly aligned" condition for such product systems of graphs and show that this coincides with the similarly-named conditions for topological k-graphs and for the associated product systems over N^k of C*-correspondences. Finally I consider the constructions arising from topological dynamical systems consisting of a locally compact Hausdorff space and k commuting local homeomorphisms. I show that in this case, the associated topological k-graph correspondence is isomorphic to the product system over N^k of C*-correspondences arising from a related Exel-Larsen system. Moreover, I show that the topological k-graph C*-algebra has a crossed product structure in the sense of Larsen.
ContributorsPatani, Nura (Author) / Kaliszewski, Steven (Thesis advisor) / Quigg, John (Thesis advisor) / Bremner, Andrew (Committee member) / Kawski, Matthias (Committee member) / Spielberg, John (Committee member) / Arizona State University (Publisher)
Created2011
150182-Thumbnail Image.png
Description
The theory of geometric quantum mechanics describes a quantum system as a Hamiltonian dynamical system, with a projective Hilbert space regarded as the phase space. This thesis extends the theory by including some aspects of the symplectic topology of the quantum phase space. It is shown that the quantum mechanical

The theory of geometric quantum mechanics describes a quantum system as a Hamiltonian dynamical system, with a projective Hilbert space regarded as the phase space. This thesis extends the theory by including some aspects of the symplectic topology of the quantum phase space. It is shown that the quantum mechanical uncertainty principle is a special case of an inequality from J-holomorphic map theory, that is, J-holomorphic curves minimize the difference between the quantum covariance matrix determinant and a symplectic area. An immediate consequence is that a minimal determinant is a topological invariant, within a fixed homology class of the curve. Various choices of quantum operators are studied with reference to the implications of the J-holomorphic condition. The mean curvature vector field and Maslov class are calculated for a lagrangian torus of an integrable quantum system. The mean curvature one-form is simply related to the canonical connection which determines the geometric phases and polarization linear response. Adiabatic deformations of a quantum system are analyzed in terms of vector bundle classifying maps and related to the mean curvature flow of quantum states. The dielectric response function for a periodic solid is calculated to be the curvature of a connection on a vector bundle.
ContributorsSanborn, Barbara (Author) / Suslov, Sergei K (Thesis advisor) / Suslov, Sergei (Committee member) / Spielberg, John (Committee member) / Quigg, John (Committee member) / Menéndez, Jose (Committee member) / Jones, Donald (Committee member) / Arizona State University (Publisher)
Created2011
149091-Thumbnail Image.png
Description

Geology and its tangential studies, collectively known and referred to in this thesis as geosciences, have been paramount to the transformation and advancement of society, fundamentally changing the way we view, interact and live with the surrounding natural and built environment. It is important to recognize the value and importance

Geology and its tangential studies, collectively known and referred to in this thesis as geosciences, have been paramount to the transformation and advancement of society, fundamentally changing the way we view, interact and live with the surrounding natural and built environment. It is important to recognize the value and importance of this interdisciplinary scientific field while reconciling its ties to imperial and colonizing extractive systems which have led to harmful and invasive endeavors. This intersection among geosciences, (environmental) justice studies, and decolonization is intended to promote inclusive pedagogical models through just and equitable methodologies and frameworks as to prevent further injustices and promote recognition and healing of old wounds. By utilizing decolonial frameworks and highlighting the voices of peoples from colonized and exploited landscapes, this annotated syllabus tackles the issues previously described while proposing solutions involving place-based education and the recentering of land within geoscience pedagogical models. (abstract)

ContributorsReed, Cameron E (Author) / Richter, Jennifer (Thesis director) / Semken, Steven (Committee member) / School of Earth and Space Exploration (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05