Matching Items (11,938)
Filtering by

Clear all filters

151965-Thumbnail Image.png
Description
Research on combinatorics education is sparse when compared with other fields in mathematics education. This research attempted to contribute to the dearth of literature by examining students' reasoning about enumerative combinatorics problems and how students conceptualize the set of elements being counted in such problems, called the solution set. In

Research on combinatorics education is sparse when compared with other fields in mathematics education. This research attempted to contribute to the dearth of literature by examining students' reasoning about enumerative combinatorics problems and how students conceptualize the set of elements being counted in such problems, called the solution set. In particular, the focus was on the stable patterns of reasoning, known as ways of thinking, which students applied in a variety of combinatorial situations and tasks. This study catalogued students' ways of thinking about solution sets as they progressed through an instructional sequence. In addition, the relationships between the catalogued ways of thinking were explored. Further, the study investigated the challenges students experienced as they interacted with the tasks and instructional interventions, and how students' ways of thinking evolved as these challenges were overcome. Finally, it examined the role of instruction in guiding students to develop and extend their ways of thinking. Two pairs of undergraduate students with no formal experience with combinatorics participated in one of the two consecutive teaching experiments conducted in Spring 2012. Many ways of thinking emerged through the grounded theory analysis of the data, but only eight were identified as robust. These robust ways of thinking were classified into three categories: Subsets, Odometer, and Problem Posing. The Subsets category encompasses two ways of thinking, both of which ultimately involve envisioning the solution set as the union of subsets. The three ways of thinking in Odometer category involve holding an item or a set of items constant and systematically varying the other items involved in the counting process. The ways of thinking belonging to Problem Posing category involve spontaneously posing new, related combinatorics problems and finding relationships between the solution sets of the original and the new problem. The evolution of students' ways of thinking in the Problem Posing category was analyzed. This entailed examining the perturbation experienced by students and the resulting accommodation of their thinking. It was found that such perturbation and its resolution was often the result of an instructional intervention. Implications for teaching practice are discussed.
ContributorsHalani, Aviva (Author) / Roh, Kyeong Hah (Thesis advisor) / Fishel, Susanna (Committee member) / Saldanha, Luis (Committee member) / Thompson, Patrick (Committee member) / Zandieh, Michelle (Committee member) / Arizona State University (Publisher)
Created2013
152807-Thumbnail Image.png
Description
Based on poor student performance in past studies, the incoherence present in the teaching of inverse functions, and teachers' own accounts of their struggles to teach this topic, it is apparent that the idea of function inverse deserves a closer look and an improved pedagogical approach. This improvement must enhance

Based on poor student performance in past studies, the incoherence present in the teaching of inverse functions, and teachers' own accounts of their struggles to teach this topic, it is apparent that the idea of function inverse deserves a closer look and an improved pedagogical approach. This improvement must enhance students' opportunity to construct a meaning for a function's inverse and, out of that meaning, produce ways to define a function's inverse without memorizing some procedure. This paper presents a proposed instructional sequence that promotes reflective abstraction in order to help students develop a process conception of function and further understand the meaning of a function inverse. The instructional sequence was used in a teaching experiment with three subjects and the results are presented here. The evidence presented in this paper supports the claim that the proposed instructional sequence has the potential to help students construct meanings needed for understanding function inverse. The results of this study revealed shifts in the understandings of all three subjects. I conjecture that these shifts were achieved by posing questions that promoted reflective abstraction. The questions and subsequent interactions appeared to result in all three students moving toward a process conception of function.
ContributorsFowler, Bethany (Author) / Carlson, Marilyn (Thesis advisor) / Roh, Kyeong (Committee member) / Zandieh, Michelle (Committee member) / Arizona State University (Publisher)
Created2014
149801-Thumbnail Image.png
Description
This study contributes to the ongoing discussion of Mathematical Knowledge for Teaching (MKT). It investigates the case of Rico, a high school mathematics teacher who had become known to his colleagues and his students as a superbly effective mathematics teacher. His students not only developed excellent mathematical skills, they also

This study contributes to the ongoing discussion of Mathematical Knowledge for Teaching (MKT). It investigates the case of Rico, a high school mathematics teacher who had become known to his colleagues and his students as a superbly effective mathematics teacher. His students not only developed excellent mathematical skills, they also developed deep understanding of the mathematics they learned. Moreover, Rico redesigned his curricula and instruction completely so that they provided a means of support for his students to learn mathematics the way he intended. The purpose of this study was to understand the sources of Rico's effectiveness. The data for this study was generated in three phases. Phase I included videos of Rico's lessons during one semester of an Algebra II course, post-lesson reflections, and Rico's self-constructed instructional materials. An analysis of Phase I data led to Phase II, which consisted of eight extensive stimulated-reflection interviews with Rico. Phase III consisted of a conceptual analysis of the prior phases with the aim of creating models of Rico's mathematical conceptions, his conceptions of his students' mathematical understandings, and his images of instruction and instructional design. Findings revealed that Rico had developed profound personal understandings, grounded in quantitative reasoning, of the mathematics that he taught, and profound pedagogical understandings that supported these very same ways of thinking in his students. Rico's redesign was driven by three factors: (1) the particular way in which Rico himself understood the mathematics he taught, (2) his reflective awareness of those ways of thinking, and (3) his ability to envision what students might learn from different instructional approaches. Rico always considered what someone might already need to understand in order to understand "this" in the way he was thinking of it, and how understanding "this" might help students understand related ideas or methods. Rico's continual reflection on the mathematics he knew so as to make it more coherent, and his continual orientation to imagining how these meanings might work for students' learning, made Rico's mathematics become a mathematics of students--impacting how he assessed his practice and engaging him in a continual process of developing MKT.
ContributorsLage Ramírez, Ana Elisa (Author) / Thompson, Patrick W. (Thesis advisor) / Carlson, Marilyn P. (Committee member) / Castillo-Chavez, Carlos (Committee member) / Saldanha, Luis (Committee member) / Middleton, James A. (Committee member) / Arizona State University (Publisher)
Created2011
150539-Thumbnail Image.png
Description
This dissertation describes an investigation of four students' ways of thinking about functions of two variables and rate of change of those two-variable functions. Most secondary, introductory algebra, pre-calculus, and first and second semester calculus courses do not require students to think about functions of more than one variable. Yet

This dissertation describes an investigation of four students' ways of thinking about functions of two variables and rate of change of those two-variable functions. Most secondary, introductory algebra, pre-calculus, and first and second semester calculus courses do not require students to think about functions of more than one variable. Yet vector calculus, calculus on manifolds, linear algebra, and differential equations all rest upon the idea of functions of two (or more) variables. This dissertation contributes to understanding productive ways of thinking that can support students in thinking about functions of two or more variables as they describe complex systems with multiple variables interacting. This dissertation focuses on modeling the way of thinking of four students who participated in a specific instructional sequence designed to explore the limits of their ways of thinking and in turn, develop a robust model that could explain, describe, and predict students' actions relative to specific tasks. The data was collected using a teaching experiment methodology, and the tasks within the teaching experiment leveraged quantitative reasoning and covariation as foundations of students developing a coherent understanding of two-variable functions and their rates of change. The findings of this study indicated that I could characterize students' ways of thinking about two-variable functions by focusing on their use of novice and/or expert shape thinking, and the students' ways of thinking about rate of change by focusing on their quantitative reasoning. The findings suggested that quantitative and covariational reasoning were foundational to a student's ability to generalize their understanding of a single-variable function to two or more variables, and their conception of rate of change to rate of change at a point in space. These results created a need to better understand how experts in the field, such as mathematicians and mathematics educators, thinking about multivariable functions and their rates of change.
ContributorsWeber, Eric David (Author) / Thompson, Patrick (Thesis advisor) / Middleton, James (Committee member) / Carlson, Marilyn (Committee member) / Saldanha, Luis (Committee member) / Milner, Fabio (Committee member) / Van de Sande, Carla (Committee member) / Arizona State University (Publisher)
Created2012
149091-Thumbnail Image.png
Description

Geology and its tangential studies, collectively known and referred to in this thesis as geosciences, have been paramount to the transformation and advancement of society, fundamentally changing the way we view, interact and live with the surrounding natural and built environment. It is important to recognize the value and importance

Geology and its tangential studies, collectively known and referred to in this thesis as geosciences, have been paramount to the transformation and advancement of society, fundamentally changing the way we view, interact and live with the surrounding natural and built environment. It is important to recognize the value and importance of this interdisciplinary scientific field while reconciling its ties to imperial and colonizing extractive systems which have led to harmful and invasive endeavors. This intersection among geosciences, (environmental) justice studies, and decolonization is intended to promote inclusive pedagogical models through just and equitable methodologies and frameworks as to prevent further injustices and promote recognition and healing of old wounds. By utilizing decolonial frameworks and highlighting the voices of peoples from colonized and exploited landscapes, this annotated syllabus tackles the issues previously described while proposing solutions involving place-based education and the recentering of land within geoscience pedagogical models. (abstract)

ContributorsReed, Cameron E (Author) / Richter, Jennifer (Thesis director) / Semken, Steven (Committee member) / School of Earth and Space Exploration (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149092-Thumbnail Image.png
Description

The ASU COVID-19 testing lab process was developed to operate as the primary testing site for all ASU staff, students, and specified external individuals. Tests are collected at various collection sites, including a walk-in site at the SDFC and various drive-up sites on campus; analysis is conducted on ASU campus

The ASU COVID-19 testing lab process was developed to operate as the primary testing site for all ASU staff, students, and specified external individuals. Tests are collected at various collection sites, including a walk-in site at the SDFC and various drive-up sites on campus; analysis is conducted on ASU campus and results are distributed virtually to all patients via the Health Services patient portal. The following is a literature review on past implementations of various process improvement techniques and how they can be applied to the ABCTL testing process to achieve laboratory goals. (abstract)

ContributorsKrell, Abby Elizabeth (Co-author) / Bruner, Ashley (Co-author) / Ramesh, Frankincense (Co-author) / Lewis, Gabriel (Co-author) / Barwey, Ishna (Co-author) / Myers, Jack (Co-author) / Hymer, William (Co-author) / Reagan, Sage (Co-author) / Compton, Carolyn (Thesis director) / McCarville, Daniel R. (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
156439-Thumbnail Image.png
Description
There have been a number of studies that have examined students’ difficulties in understanding the idea of logarithm and the effectiveness of non-traditional interventions. However, there have been few studies that have examined the understandings students develop and need to develop when completing conceptually oriented logarithmic lessons. In this document,

There have been a number of studies that have examined students’ difficulties in understanding the idea of logarithm and the effectiveness of non-traditional interventions. However, there have been few studies that have examined the understandings students develop and need to develop when completing conceptually oriented logarithmic lessons. In this document, I present the three papers of my dissertation study. The first paper examines two students’ development of concepts foundational to the idea of logarithm. This paper discusses two essential understandings that were revealed to be problematic and essential for students’ development of productive meanings for exponents, logarithms and logarithmic properties. The findings of this study informed my later work to support students in understanding logarithms, their properties and logarithmic functions. The second paper examines two students’ development of the idea of logarithm. This paper describes the reasoning abilities two students exhibited as they engaged with tasks designed to foster their construction of more productive meanings for the idea of logarithm. The findings of this study provide novel insights for supporting students in understanding the idea of logarithm meaningfully. Finally, the third paper begins with an examination of the historical development of the idea of logarithm. I then leveraged the insights of this literature review and the first two papers to perform a conceptual analysis of what is involved in learning and understanding the idea of logarithm. The literature review and conceptual analysis contributes novel and useful information for curriculum developers, instructors, and other researchers studying student learning of this idea.
ContributorsKuper Flores, Emily Ginamarie (Author) / Carlson, Marilyn (Thesis advisor) / Thompson, Patrick (Committee member) / Milner, Fabio (Committee member) / Zazkis, Dov (Committee member) / Czocher, Jennifer (Committee member) / Arizona State University (Publisher)
Created2018
155950-Thumbnail Image.png
Description
The advancement of technology has substantively changed the practices of numerous professions, including teaching. When an instructor first adopts a new technology, established classroom practices are perturbed. These perturbations can have positive and negative, large or small, and long- or short-term effects on instructors’ abilities to teach mathematical concepts with

The advancement of technology has substantively changed the practices of numerous professions, including teaching. When an instructor first adopts a new technology, established classroom practices are perturbed. These perturbations can have positive and negative, large or small, and long- or short-term effects on instructors’ abilities to teach mathematical concepts with the new technology. Therefore, in order to better understand teaching with technology, we need to take a closer look at the adoption of new technology in a mathematics classroom. Using interviews and classroom observations, I explored perturbations in mathematical classroom practices as an instructor implemented virtual manipulatives as novel didactic objects in rational function instruction. In particular, the instructor used didactic objects that were designed to lay the foundation for developing a conceptual understanding of rational functions through the coordination of relative size of the value of the numerator in terms of the value of the denominator. The results are organized according to a taxonomy that captures leader actions, communication, expectations of technology, roles, timing, student engagement, and mathematical conceptions.
ContributorsPampel, Krysten (Author) / Currin van de Sande, Carla (Thesis advisor) / Thompson, Patrick W (Committee member) / Carlson, Marilyn (Committee member) / Milner, Fabio (Committee member) / Strom, April (Committee member) / Arizona State University (Publisher)
Created2017
157204-Thumbnail Image.png
Description
Researchers have described two fundamental conceptualizations for division, known as partitive and quotitive division. Partitive division is the conceptualization of a÷b as the amount of something per copy such that b copies of this amount yield the amount a. Quotitive division is the conceptualization of a÷b as the number of

Researchers have described two fundamental conceptualizations for division, known as partitive and quotitive division. Partitive division is the conceptualization of a÷b as the amount of something per copy such that b copies of this amount yield the amount a. Quotitive division is the conceptualization of a÷b as the number of copies of the amount b that yield the amount a. Researchers have identified many cognitive obstacles that have inhibited the development of robust meanings for division involving non-whole values, while other researchers have commented on the challenges related to such development. Regarding division with fractions, much research has been devoted to quotitive conceptualizations of division, or on symbolic manipulation of variables. Research and curricular activities have largely avoided the study and development of partitive conceptualizations involving fractions, as well as their connection to the invert-and-multiply algorithm. In this dissertation study, I investigated six middle school mathematics teachers’ meanings related to partitive conceptualizations of division over the positive rational numbers. I also investigated the impact of an intervention that I designed with the intent of advancing one of these teachers’ meanings. My findings suggested that the primary cognitive obstacles were difficulties with maintaining multiple levels of units, weak quantitative meanings for fractional multipliers, and an unawareness of (and confusion due to) the two quantitative conceptualizations of division. As a product of this study, I developed a framework for characterizing robust meanings for division, indicated directions for future research, and shared implications for curriculum and instruction.
ContributorsWeber, Matthew Barrett (Author) / Strom, April D (Thesis advisor) / Thompson, Patrick W (Thesis advisor) / Carlson, Marilyn (Committee member) / Middleton, James (Committee member) / Tzur, Ron (Committee member) / Arizona State University (Publisher)
Created2019
157227-Thumbnail Image.png
Description
The concept of distribution is one of the core ideas of probability theory and inferential statistics, if not the core idea. Many introductory statistics textbooks pay lip service to stochastic/random processes but how do students think about these processes? This study sought to explore what understandings of stochastic

The concept of distribution is one of the core ideas of probability theory and inferential statistics, if not the core idea. Many introductory statistics textbooks pay lip service to stochastic/random processes but how do students think about these processes? This study sought to explore what understandings of stochastic process students develop as they work through materials intended to support them in constructing the long-run behavior meaning for distribution.

I collected data in three phases. First, I conducted a set of task-based clinical interviews that allowed me to build initial models for the students’ meanings for randomness and probability. Second, I worked with Bonnie in an exploratory teaching setting through three sets of activities to see what meanings she would develop for randomness and stochastic process. The final phase consisted of me working with Danielle as she worked through the same activities as Bonnie but this time in teaching experiment setting where I used a series of interventions to test out how Danielle was thinking about stochastic processes.

My analysis shows that students can be aware that the word “random” lives in two worlds, thereby having conflicting meanings. Bonnie’s meaning for randomness evolved over the course of the study from an unproductive meaning centered on the emotions of the characters in the context to a meaning that randomness is the lack of a pattern. Bonnie’s lack of pattern meaning for randomness subsequently underpinned her image of stochastic/processes, leading her to engage in pattern-hunting behavior every time she needed to classify a process as stochastic or not. Danielle’s image of a stochastic process was grounded in whether she saw the repetition as being reproducible (process can be repeated, and outcomes are identical to prior time through the process) or replicable (process can be repeated but the outcomes aren’t in the same order as before). Danielle employed a strategy of carrying out several trials of the process, resetting the applet, and then carrying out the process again, making replicability central to her thinking.
ContributorsHatfield, Neil (Author) / Thompson, Patrick (Thesis advisor) / Carlson, Marilyn (Committee member) / Middleton, James (Committee member) / Lehrer, Richard (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2019