Matching Items (14)
Description

Vehicle trips presently account for approximately 50% of San Francisco’s greenhouse gas emissions (San Francisco County Transportation Authority, 2008). City and county officials have developed aggressive strategies for the future of passenger transportation in the metropolitan area, and are determined to move away from a “business as usual” future. This

Vehicle trips presently account for approximately 50% of San Francisco’s greenhouse gas emissions (San Francisco County Transportation Authority, 2008). City and county officials have developed aggressive strategies for the future of passenger transportation in the metropolitan area, and are determined to move away from a “business as usual” future. This project starts with current-state source data from a life-cycle comparison of urban transportation systems (Chester, Horvath, & Madanat, 2010), and carries the inventoried emissions and energy usage through by way of published future scenarios for San Francisco.

From the extrapolated calculations of future emissions/energy, the implied mix of transportation modes can be backed out of the numbers. Five scenarios are evaluated, from “business as usual” through very ambitious “healthy environment” goals. The results show that when planners and policymakers craft specific goals or strategies for a location or government, those targets, even if met, are unlikely to result in the intended physical outcomes. City and state governments would be wise to support broad strategy goals (like 20% GHG reduction) with prioritized specifics that can inform real projects leading to the goals (for instance, add 5 miles of bike path per year through 2020, or remove 5 parking garages and replace them with transit depots). While these results should not be used as predictions or forecasts, they can inform the crafters of future transportation policy as an opportunity for improvement or a cautionary tale.

Created2012-05
Description

This report is the consolidated work of an interdisciplinary course project in CEE494/598, CON598, and SOS598, Urban Infrastructure Anatomy and Sustainable Development. In Fall 2012, the course at Arizona State University used sustainability research frameworks and life-cycle assessment methods to evaluate the comprehensive benefits and costs when transit-oriented development is

This report is the consolidated work of an interdisciplinary course project in CEE494/598, CON598, and SOS598, Urban Infrastructure Anatomy and Sustainable Development. In Fall 2012, the course at Arizona State University used sustainability research frameworks and life-cycle assessment methods to evaluate the comprehensive benefits and costs when transit-oriented development is infilled along the proposed light rail transit line expansion. In each case, and in every variation of possible future scenarios, there were distinct life-cycle benefits from both developing in more dense urban structures and reducing automobile travel in the process.

Results from the report are superseded by our publication in Environmental Science and Technology.

Created2012-12
Description

Public transit systems are often accepted as energy and environmental improvements to automobile travel, however, few life cycle assessments exist to understand the effects of implementation of transit policy decisions. To better inform decision-makers, this project evaluates the decision to construct and operate public transportation systems and the expected energy

Public transit systems are often accepted as energy and environmental improvements to automobile travel, however, few life cycle assessments exist to understand the effects of implementation of transit policy decisions. To better inform decision-makers, this project evaluates the decision to construct and operate public transportation systems and the expected energy and environmental benefits over continued automobile use. The public transit systems are selected based on screening criteria. Initial screening included advanced implementation (5 to 10 years so change in ridership could be observed), similar geographic regions to ensure consistency of analysis parameters, common transit agencies or authorities to ensure a consistent management culture, and modes reflecting large infrastructure investments to provide an opportunity for robust life cycle assessment of large impact components. An in-depth screening process including consideration of data availability, project age, energy consumption, infrastructure information, access and egress information, and socio-demographic characteristics was used as the second filter. The results of this selection process led to Los Angeles Metro’s Orange and Gold lines.

In this study, the life cycle assessment framework is used to evaluate energy inputs and emissions of greenhouse gases, particulate matter (10 and 2.5 microns), sulfur dioxide, nitrogen oxides, volatile organic compounds, and carbon monoxide. For the Orange line, Gold line, and competing automobile trip, an analysis system boundary that includes vehicle, infrastructure, and energy production components is specified. Life cycle energy use and emissions inventories are developed for each mode considering direct (vehicle operation), ancillary (non-vehicle operation including vehicle maintenance, infrastructure construction, infrastructure operation, etc.), and supply chain processes and services. In addition to greenhouse gas emissions, the inventories are linked to their potential for respiratory impacts and smog formation, and the time it takes to payback in the lifetime of each transit system.

Results show that for energy use and greenhouse gas emissions, the inclusion of life cycle components increases the footprint between 42% and 91% from vehicle propulsion exclusively. Conventional air emissions show much more dramatic increases highlighting the effectiveness of “tailpipe” environmental policy. Within the life cycle, vehicle operation is often small compared to other components. Particulate matter emissions increase between 270% and 5400%. Sulfur dioxide emissions increase by several orders of magnitude for the on road modes due to electricity use throughout the life cycle. NOx emissions increase between 31% and 760% due to supply chain truck and rail transport. VOC emissions increase due to infrastructure material production and placement by 420% and 1500%. CO emissions increase by between 20% and 320%. The dominating contributions from life cycle components show that the decision to build an infrastructure and operate a transportation mode in Los Angeles has impacts far outside of the city and region. Life cycle results are initially compared at each system’s average occupancy and a breakeven analysis is performed to compare the range at which modes are energy and environmentally competitive.

The results show that including a broad suite of energy and environmental indicators produces potential tradeoffs that are critical to decision makers. While the Orange and Gold line require less energy and produce fewer greenhouse gas emissions per passenger mile traveled than the automobile, this ordering is not necessarily the case for the conventional air emissions. It is possible that a policy that focuses on one pollutant may increase another, highlighting the need for a broad set of indicators and life cycle thinking when making transportation infrastructure decisions.

Description

Public transportation systems are often part of strategies to reduce urban environmental impacts from passenger transportation, yet comprehensive energy and environmental life-cycle measures, including upfront infrastructure effects and indirect and supply chain processes, are rarely considered. Using the new bus rapid transit and light rail lines in Los Angeles, near-term

Public transportation systems are often part of strategies to reduce urban environmental impacts from passenger transportation, yet comprehensive energy and environmental life-cycle measures, including upfront infrastructure effects and indirect and supply chain processes, are rarely considered. Using the new bus rapid transit and light rail lines in Los Angeles, near-term and long-term life-cycle impact assessments are developed, including consideration of reduced automobile travel. Energy consumption and emissions of greenhouse gases and criteria pollutants are assessed, as well the potential for smog and respiratory impacts.

Results show that life-cycle infrastructure, vehicle, and energy production components significantly increase the footprint of each mode (by 48–100% for energy and greenhouse gases, and up to 6200% for environmental impacts), and emerging technologies and renewable electricity standards will significantly reduce impacts. Life-cycle results are identified as either local (in Los Angeles) or remote, and show how the decision to build and operate a transit system in a city produces environmental impacts far outside of geopolitical boundaries. Ensuring shifts of between 20–30% of transit riders from automobiles will result in passenger transportation greenhouse gas reductions for the city, and the larger the shift, the quicker the payback, which should be considered for time-specific environmental goals.

141396-Thumbnail Image.png
Description

In an extreme heat event, people can go to air-conditioned public facilities if residential air-conditioning is not available. Residences that heat slowly may also mitigate health effects, particularly in neighborhoods with social vulnerability. We explored the contributions of social vulnerability and these infrastructures to heat mortality in Maricopa County and

In an extreme heat event, people can go to air-conditioned public facilities if residential air-conditioning is not available. Residences that heat slowly may also mitigate health effects, particularly in neighborhoods with social vulnerability. We explored the contributions of social vulnerability and these infrastructures to heat mortality in Maricopa County and whether these relationships are sensitive to temperature. Using Poisson regression modeling with heat-related mortality as the outcome, we assessed the interaction of increasing temperature with social vulnerability, access to publicly available air conditioned space, home air conditioning and the thermal properties of residences. As temperatures increase, mortality from heat-related illness increases less in census tracts with more publicly accessible cooled spaces. Mortality from all internal causes of death did not have this association. Building thermal protection was not associated with mortality. Social vulnerability was still associated with mortality after adjusting for the infrastructure variables. To reduce heat-related mortality, the use of public cooled spaces might be expanded to target the most vulnerable.

ContributorsEisenman, David P. (Author) / Wilhalme, Holly (Author) / Tseng, Chi-Hong (Author) / Chester, Mikhail Vin (Author) / English, Paul (Author) / Pincetl, Stephanie Sabine, 1952- (Author) / Fraser, Andrew (Author) / Vangala, Sitaram (Author) / Dhaliwal, Satvinder K. (Author)
Created2016-08-03
152588-Thumbnail Image.png
Description
A methodology is developed that integrates institutional analysis with Life Cycle Assessment (LCA) to identify and overcome barriers to sustainability transitions and to bridge the gap between environmental practitioners and decisionmakers. LCA results are rarely joined with analyses of the social systems that control or influence decisionmaking and policies. As

A methodology is developed that integrates institutional analysis with Life Cycle Assessment (LCA) to identify and overcome barriers to sustainability transitions and to bridge the gap between environmental practitioners and decisionmakers. LCA results are rarely joined with analyses of the social systems that control or influence decisionmaking and policies. As a result, LCA conclusions generally lack information about who or what controls different parts of the system, where and when the processes' environmental decisionmaking happens, and what aspects of the system (i.e. a policy or regulatory requirement) would have to change to enable lower environmental impact futures. The value of the combined institutional analysis and LCA (the IA-LCA) is demonstrated using a case study of passenger transportation in the Phoenix, Arizona metropolitan area. A retrospective LCA is developed to estimate how roadway investment has enabled personal vehicle travel and its associated energy, environmental, and economic effects. Using regional travel forecasts, a prospective life cycle inventory is developed. Alternative trajectories are modeled to reveal future "savings" from reduced roadway construction and vehicle travel. An institutional analysis matches the LCA results with the specific institutions, players, and policies that should be targeted to enable transitions to these alternative futures. The results show that energy, economic, and environmental benefits from changes in passenger transportation systems are possible, but vary significantly depending on the timing of the interventions. Transition strategies aimed at the most optimistic benefits should include 1) significant land-use planning initiatives at the local and regional level to incentivize transit-oriented development infill and urban densification, 2) changes to state or federal gasoline taxes, 3) enacting a price on carbon, and 4) nearly doubling vehicle fuel efficiency together with greater market penetration of alternative fuel vehicles. This aggressive trajectory could decrease the 2050 energy consumption to 1995 levels, greenhouse gas emissions to 1995, particulate emissions to 2006, and smog-forming emissions to 1972. The potential benefits and costs are both private and public, and the results vary when transition strategies are applied in different spatial and temporal patterns.
ContributorsKimball, Mindy (Author) / Chester, Mikhail (Thesis advisor) / Allenby, Braden (Committee member) / Golub, Aaron (Committee member) / Arizona State University (Publisher)
Created2014
128648-Thumbnail Image.png
Description

Heat vulnerability of urban populations is becoming a major issue of concern with climate change, particularly in the cities of the Southwest United States. In this article we discuss the importance of understanding coupled social and technical systems, how they constitute one another, and how they form the conditions and

Heat vulnerability of urban populations is becoming a major issue of concern with climate change, particularly in the cities of the Southwest United States. In this article we discuss the importance of understanding coupled social and technical systems, how they constitute one another, and how they form the conditions and circumstances in which people experience heat. We discuss the particular situation of Los Angeles and Maricopa Counties, their urban form and the electric grid. We show how vulnerable populations are created by virtue of the age and construction of buildings, the morphology of roads and distribution of buildings on the landscape. Further, the regulatory infrastructure of electricity generation and distribution also contributes to creating differential vulnerability. We contribute to a better understanding of the importance of sociotechnical systems. Social infrastructure includes codes, conventions, rules and regulations; technical systems are the hard systems of pipes, wires, buildings, roads, and power plants. These interact to create lock-in that is an obstacle to addressing issues such as urban heat stress in a novel and equitable manner.

Created2016-08-25
128750-Thumbnail Image.png
Description

This study examines the distributional equity of urban tree canopy (UTC) cover for Baltimore, MD, Los Angeles, CA, New York, NY, Philadelphia, PA, Raleigh, NC, Sacramento, CA, and Washington, D.C. using high spatial resolution land cover data and census data. Data are analyzed at the Census Block Group levels using

This study examines the distributional equity of urban tree canopy (UTC) cover for Baltimore, MD, Los Angeles, CA, New York, NY, Philadelphia, PA, Raleigh, NC, Sacramento, CA, and Washington, D.C. using high spatial resolution land cover data and census data. Data are analyzed at the Census Block Group levels using Spearman’s correlation, ordinary least squares regression (OLS), and a spatial autoregressive model (SAR). Across all cities there is a strong positive correlation between UTC cover and median household income. Negative correlations between race and UTC cover exist in bivariate models for some cities, but they are generally not observed using multivariate regressions that include additional variables on income, education, and housing age. SAR models result in higher r-square values compared to the OLS models across all cities, suggesting that spatial autocorrelation is an important feature of our data. Similarities among cities can be found based on shared characteristics of climate, race/ethnicity, and size. Our findings suggest that a suite of variables, including income, contribute to the distribution of UTC cover. These findings can help target simultaneous strategies for UTC goals and environmental justice concerns.

ContributorsSchwarz, Kirsten (Author) / Fragkias, Michail (Author) / Boone, Christopher (Author) / Zhou, Weiqi (Author) / McHale, Melissa (Author) / Grove, J. Morgan (Author) / O'Neil-Dunne, Jarlath (Author) / McFadden, Joseph P. (Author) / Buckley, Geoffrey L. (Author) / Childers, Dan (Author) / Ogden, Laura (Author) / Pincetl, Stephanie Sabine, 1952- (Author) / Pataki, Diane (Author) / Whitmer, Ali (Author) / Cadenasso, Mary L. (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2015-04-01
142-Thumbnail Image.png
Description

Study Background: Researchers at ASU have determined that significant energy and environmental benefits are possible in the Phoenix metro area over the next 60 years from transit-oriented development along the current Valley Metro light rail line. The team evaluated infill densification outcomes when vacant lots and some dedicated surface parking

Study Background: Researchers at ASU have determined that significant energy and environmental benefits are possible in the Phoenix metro area over the next 60 years from transit-oriented development along the current Valley Metro light rail line. The team evaluated infill densification outcomes when vacant lots and some dedicated surface parking lots are repurposed for residential development. Life cycle building (construction, use, and energy production) and transportation (manufacturing, operation, and energy production) changes were included and energy use and greenhouse gas emissions were evaluated in addition to the potential for respiratory impacts and smog formation. All light rail infill scenarios are compared against new single family home construction in outlying areas.

Overview of Results: In the most conservative scenario, the Phoenix area can place 2,200 homes near light rail and achieve 9-15% reductions in energy use and emissions. By allowing multi-family apartments to fill vacant lots, 12,000 new dwelling units can be infilled achieving a 28-42% reduction. When surface lots are developed in addition to vacant lots then multi-family apartment buildings around light rail can deliver 30-46% energy and environmental reductions. These reductions occur even after new trains are put into operation to meet the increased demand.

Created2013
102-Thumbnail Image.png
Description

The leading source of weather-related deaths in the United States is heat, and future projections show that the frequency, duration, and intensity of heat events will increase in the Southwest. Presently, there is a dearth of knowledge about how infrastructure may perform during heat waves or could contribute to social

The leading source of weather-related deaths in the United States is heat, and future projections show that the frequency, duration, and intensity of heat events will increase in the Southwest. Presently, there is a dearth of knowledge about how infrastructure may perform during heat waves or could contribute to social vulnerability. To understand how buildings perform in heat and potentially stress people, indoor air temperature changes when air conditioning is inaccessible are modeled for building archetypes in Los Angeles, California, and Phoenix, Arizona, when air conditioning is inaccessible is estimated.

An energy simulation model is used to estimate how quickly indoor air temperature changes when building archetypes are exposed to extreme heat. Building age and geometry (which together determine the building envelope material composition) are found to be the strongest indicators of thermal envelope performance. Older neighborhoods in Los Angeles and Phoenix (often more centrally located in the metropolitan areas) are found to contain the buildings whose interiors warm the fastest, raising particular concern because these regions are also forecast to experience temperature increases. To combat infrastructure vulnerability and provide heat refuge for residents, incentives should be adopted to strategically retrofit buildings where both socially vulnerable populations reside and increasing temperatures are forecast.

Created2015