Matching Items (102)
132054-Thumbnail Image.png
Description
Callithrix penicillata, also known as the Black-tufted marmoset primarily lives in the Brazilian highlands and has had little research conducted on it. For this project I performed a genome curation on the newly assembled genome of this species. The scaffolds obtained by the Dovetail Genomics reads were organized and labeled

Callithrix penicillata, also known as the Black-tufted marmoset primarily lives in the Brazilian highlands and has had little research conducted on it. For this project I performed a genome curation on the newly assembled genome of this species. The scaffolds obtained by the Dovetail Genomics reads were organized and labeled into chromosomes using the 2014 Callithrix jacchus genome as a reference. Then, using that same genome as a reference, 13 of the chromosomes were reverse complimented to be continuous with the 2014 Callithrix jacchus genome. The N50 statistics of the assembly were calculated and found to be 124 Mb. Quality scores were run for the final genome using referee and visualized with a bar plot, with 99% of sites scoring above 0. Heterozygosity was also calculated and found to be 0.3%. Finally, the final version of the genome was visually compared to the 2017 Callithrix jacchus genome and the GRCh38 human genome. This genome was submitted to the NCBIs database to await further approval.
ContributorsJohnson, Joelle Genevieve (Author) / Cartwright, Reed (Thesis director) / Stone, Anne (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
Description
“Tell It to the Frogs: Fukushima’s nuclear disaster and its impact on the Japanese Tree Frog” is a representation of the work from Giraudeau et. al’s “Carotenoid distribution in wild Japanese tree frogs (Hyla japonica) exposed to ionizing radiation in Fukushima.” This paper looked to see if carotenoid levels in

“Tell It to the Frogs: Fukushima’s nuclear disaster and its impact on the Japanese Tree Frog” is a representation of the work from Giraudeau et. al’s “Carotenoid distribution in wild Japanese tree frogs (Hyla japonica) exposed to ionizing radiation in Fukushima.” This paper looked to see if carotenoid levels in the tree frog’s vocal sac, liver, and blood were affected by radiation from Fukushima’s power plant explosion. Without carotenoids, the pigment that gives the frogs their orange color on their necks, their courtship practices would be impacted and would not be as able to show off their fitness to potential mates. The artwork inspired by this research displayed the tree frog’s degradation over time due to radiation, starting with normal life and ending with their death and open on the table. The sculptures also pinpoint where the carotenoids were being measured with a brilliant orange glaze. Through ceramic hand building, the artist created larger than life frogs in hopes to elicit curiosity about them and their plight. While the paper did not conclude any changes in the frog’s physiology after 18 months of exposure, there are still questions that are left unanswered. Why did these frogs not have any reaction? Could there be any effects after more time has passed? Is radiation leakage as big of a problem as previously thought? The only way to get the answers to these questions is to be aware of these amphibians, the circumstances that led them to be involved, and continued research on them and radiation.
ContributorsWesterfield, Savannah (Author) / Beiner, Susan (Thesis director) / McGraw, Kevin (Committee member) / School of Life Sciences (Contributor) / School of Art (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133514-Thumbnail Image.png
Description
Among the most ornate animal traits in nature are the angle-dependent (i.e. iridescent) structural colors of many birds, beetles, and butterflies. Though we now have a solid understanding of the mechanisms, function, and evolution of these features in several groups, less attention has been paid to the potential for angle-dependent

Among the most ornate animal traits in nature are the angle-dependent (i.e. iridescent) structural colors of many birds, beetles, and butterflies. Though we now have a solid understanding of the mechanisms, function, and evolution of these features in several groups, less attention has been paid to the potential for angle-dependent reflectance in otherwise matte-appearing (i.e. not thought to be structurally colored) tissues. Here for the first time we describe non-iridescent angle-dependent coloration from the tail and wing feathers of several parrot species (Psittaciformes). We employed a novel approach \u2014 by calculating chromatic and achromatic contrasts (in just noticeable differences, JNDs) of straight and angled measurements of the same feather patch \u2014 to test for perceptually relevant angle-dependent changes in coloration on dorsal and ventral feather surfaces. We found, among the 15 parrot species studied, significant angle dependence for nearly all parameters (except chromatic JNDs on the ventral side of wing feathers). We then measured microstructural features on each side of feathers, including size and color of barbs and barbules, to attempt to predict interspecific variation in degree of angle-dependent reflectance. We found that hue, saturation, and brightness of feather barbs, barbule saturation, and barb:barbule coverage ratio were the strongest predictors of angle-dependent coloration. Interestingly, there was significant phylogenetic signal in only one of the seven angle-dependence models tested. These findings deepen our views on the importance of microscopic feather features in the production of directional animal coloration, especially in tissues that appear to be statically colored.
ContributorsReed, Steven Andrew (Co-author) / McGraw, Kevin (Thesis director) / Pratt, Stephen (Committee member) / Simpson, Richard (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133795-Thumbnail Image.png
Description
Since its discovery in 1524, many people have characterized the vermiform appendix. Charles Darwin considered the human appendix to be a vestige and a useless structure. Others at the time opposed this hypothesis. However, Darwin's hypothesis became prevalent one until recently when there became a renewed interest in the appendix

Since its discovery in 1524, many people have characterized the vermiform appendix. Charles Darwin considered the human appendix to be a vestige and a useless structure. Others at the time opposed this hypothesis. However, Darwin's hypothesis became prevalent one until recently when there became a renewed interest in the appendix because of advancements in microscopes, knowledge of the immune system, and phylogenetics. In this review, I will argue that the vermiform appendix, although still not completely understood, has important functions. First, I will give the anatomy of the appendix. I will discuss the comparative anatomy between different animals and also primates. I will address the effects of appendicitis and appendectomy. I will give background on vestigial structures and will discuss if the appendix is a vestige. Following, I will review the evolution of the appendix. Finally, I will argue that the function of the appendix is as an immune organ, including discussion of gut-associated lymphoid tissue (GALT), development of lymphoid follicles in GALT and their comparison within different organs, Immunoglobulin A (IgA) function in the gut, biofilms as evidence that the appendix is a safe-house for beneficial bacteria, re-inoculation of the bowel, and protection against recurring infection. I will conclude with future studies that should be conducted to further our understanding of the vermiform appendix.
ContributorsPrestwich, Shelby Elizabeth (Author) / Cartwright, Reed (Thesis director) / Lynch, John (Committee member) / Furstenau, Tara (Committee member) / School of Geographical Sciences and Urban Planning (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134524-Thumbnail Image.png
Description
With the rising data output and falling costs of Next Generation Sequencing technologies, research into data compression is crucial to maintaining storage efficiency and costs. High throughput sequencers such as the HiSeqX Ten can produce up to 1.8 terabases of data per run, and such large storage demands are even

With the rising data output and falling costs of Next Generation Sequencing technologies, research into data compression is crucial to maintaining storage efficiency and costs. High throughput sequencers such as the HiSeqX Ten can produce up to 1.8 terabases of data per run, and such large storage demands are even more important to consider for institutions that rely on their own servers rather than large data centers (cloud storage)1. Compression algorithms aim to reduce the amount of space taken up by large genomic datasets by encoding the most frequently occurring symbols with the shortest bit codewords and by changing the order of the data to make it easier to encode. Depending on the probability distribution of the symbols in the dataset or the structure of the data, choosing the wrong algorithm could result in a compressed file larger than the original or a poorly compressed file that results in a waste of time and space2. To test efficiency among compression algorithms for each file type, 37 open-source compression algorithms were used to compress six types of genomic datasets (FASTA, VCF, BCF, GFF, GTF, and SAM) and evaluated on compression speed, decompression speed, compression ratio, and file size using the benchmark test lzbench. Compressors that outpreformed the popular bioinformatics compressor Gzip (zlib -6) were evaluated against one another by ratio and speed for each file type and across the geometric means of all file types. Compressors that exhibited fast compression and decompression speeds were also evaluated by transmission time through variable speed internet pipes in scenarios where the file was compressed only once or compressed multiple times.
ContributorsHowell, Abigail (Author) / Cartwright, Reed (Thesis director) / Wilson Sayres, Melissa (Committee member) / Taylor, Jay (Committee member) / Barrett, The Honors College (Contributor)
Created2017-05
135351-Thumbnail Image.png
Description
Historically, studies of condition-dependent signals in animals have been male-centric, but recent work suggests that female ornaments can also communicate individual quality (e.g., disease state, fecundity). There has been a surge of interest in how urbanization alters signaling traits, but we know little about if and how cities affect signal

Historically, studies of condition-dependent signals in animals have been male-centric, but recent work suggests that female ornaments can also communicate individual quality (e.g., disease state, fecundity). There has been a surge of interest in how urbanization alters signaling traits, but we know little about if and how cities affect signal expression in female animals. We measured carotenoid-based plumage coloration and coccidian (Isospora spp) parasite burden in desert and city populations of house finches to examine urban impacts on male and female health and attractiveness. In earlier work, we showed that male house finches are less colorful and more parasitized in the city, and we again detected that pattern in this study for males. However, though city females are also less colorful than their rural counterparts, we found that rural females were more parasitized. Also, regardless of sex and unlike rural birds, more colorful birds in the city were more heavily infected with coccidia. These results show that urban environments can disrupt signal honesty in female animals and highlight the need for more studies on how cities affect disease and condition-dependent traits in both male and female animals.
ContributorsSykes, Brooke Emma (Author) / McGraw, Kevin (Thesis director) / Sweazea, Karen (Committee member) / Hutton, Pierce (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135440-Thumbnail Image.png
Description
Many bacteria actively import environmental DNA and incorporate it into their genomes. This behavior, referred to as transformation, has been described in many species from diverse taxonomic backgrounds. Transformation is expected to carry some selective advantages similar to those postulated for meiotic sex in eukaryotes. However, the accumulation of loss-of-function

Many bacteria actively import environmental DNA and incorporate it into their genomes. This behavior, referred to as transformation, has been described in many species from diverse taxonomic backgrounds. Transformation is expected to carry some selective advantages similar to those postulated for meiotic sex in eukaryotes. However, the accumulation of loss-of-function alleles at transformation loci and an increased mutational load from recombining with DNA from dead cells create additional costs to transformation. These costs have been shown to outweigh many of the benefits of recombination under a variety of likely parameters. We investigate an additional proposed benefit of sexual recombination, the Red Queen hypothesis, as it relates to bacterial transformation. Here we describe a computational model showing that host-pathogen coevolution may provide a large selective benefit to transformation and allow transforming cells to invade an environment dominated by otherwise equal non-transformers. Furthermore, we observe that host-pathogen dynamics cause the selection pressure on transformation to vary extensively in time, explaining the tight regulation and wide variety of rates observed in naturally competent bacteria. Host-pathogen dynamics may explain the evolution and maintenance of natural competence despite its associated costs.
ContributorsPalmer, Nathan David (Author) / Cartwright, Reed (Thesis director) / Wang, Xuan (Committee member) / Sievert, Chris (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135454-Thumbnail Image.png
Description
Mammary gland development in humans during puberty involves the enlargement of breast tissue, but this is not true in non-human primates. To identify potential causes of this difference, I examined variation in substitution rates across genes related to mammary development. Genes undergoing purifying selection show slower-than-average substitution rates, while genes

Mammary gland development in humans during puberty involves the enlargement of breast tissue, but this is not true in non-human primates. To identify potential causes of this difference, I examined variation in substitution rates across genes related to mammary development. Genes undergoing purifying selection show slower-than-average substitution rates, while genes undergoing positive selection show faster rates. These may be related to the difference between humans and other primates. Three genes were found to be accelerated were FOXF1, IGFBP5, and ATP2B2, but only the latter one was found in humans and it seems unlikely that it would be related to the differences between mammary gland development at puberty between humans and non-human primates.
ContributorsArroyo, Diana (Author) / Cartwright, Reed (Thesis director) / Wilson Sayres, Melissa (Committee member) / Schwartz, Rachel (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134961-Thumbnail Image.png
Description
There are two electrophysiological states of sleep in birds (rapid-eye-movement sleep [REM] and slow-wave sleep [SWS]), which have different functions and costs. REM improves memory consolidation, while SWS is neuro-restorative but also exposes the animal to more risk during this deep-sleep phase. Birds who sleep in more exposed microsites are known

There are two electrophysiological states of sleep in birds (rapid-eye-movement sleep [REM] and slow-wave sleep [SWS]), which have different functions and costs. REM improves memory consolidation, while SWS is neuro-restorative but also exposes the animal to more risk during this deep-sleep phase. Birds who sleep in more exposed microsites are known to invest proportionally less in SWS (presumably to ensure proper vigilance), but otherwise little else is known about the ecological or behavioral predictors of how much time birds devote to REM v. SWS sleep. In this comparative analysis, we examine how proportional time spent in SWS v. REM is related to brain mass and duration of the incubation period in adults. Brain mass and incubation period were chosen as predictors of sleep state investment because brain mass is positively correlated with body size (and may show a relationship between physical development and sleep) and incubation period can be a link used to show similarities and differences between birds and mammals (using mammalian gestation period). We hypothesized that (1) species with larger brains (relative to body size and also while controlling for phylogeny) would have higher demands for information processing, and possibly proportionally outweigh neuro-repair, and thus devote more time to REM and that (2) species with longer incubation periods would have proportionally more REM due to the extended time required for overnight predator vigilance (and not falling into deep sleep) while on the nest. We found, using neurophysiological data from literature on 27 bird species, that adults from species with longer incubation periods spent proportionally more time in REM sleep, but that relative brain size was not significantly associated with relative time spent in REM or SWS. We therefore provide evidence that mammalian and avian REM in response to incubation/gestation period have convergently evolved. Our results suggest that overnight environmental conditions (e.g. sleep site exposure) might have a greater effect on sleep parameters than gross morphological attributes.
ContributorsRaiffe, Joshua Sapell (Author) / McGraw, Kevin (Thesis director) / Deviche, Pierre (Committee member) / Hutton, Pierce (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134101-Thumbnail Image.png
Description
Humans have greatly altered the night-time photic environment via the production of artificial light at night (ALAN; e.g. street lights, car traffic, billboards, lit buildings). ALAN is problematic because it may significantly alter the seasonal/daily physiological rhythms or behaviors of animals. There has been considerable interest in the impacts of

Humans have greatly altered the night-time photic environment via the production of artificial light at night (ALAN; e.g. street lights, car traffic, billboards, lit buildings). ALAN is problematic because it may significantly alter the seasonal/daily physiological rhythms or behaviors of animals. There has been considerable interest in the impacts of ALAN on health in humans and lab animals, but most such work has centered on adults and we know comparatively little about effects on young animals. We exposed 3-week-old king quail (Excalfactoria chinensis) to a constant overnight blue-light regime for 6 weeks and assessed weekly bactericidal activity of plasma against Escherichia coli - a commonly employed metric of innate immunity in animals. We found that chronic ALAN exposure significantly increased immune function, and that this elevation in immune performance manifested at different developmental time points in males and females. These results counter the pervasive notion that overnight light exposure is universally physiologically harmful to diurnal organisms and indicate that ALAN can provide sex-specific, short-term immunological boosts to developing animals.
ContributorsSaini, Chandan (Author) / McGraw, Kevin (Thesis director) / Hutton, Pierce (Committee member) / Sweazea, Karen (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12