Matching Items (3)
Filtering by

Clear all filters

130373-Thumbnail Image.png
Description
Premise of the study: Land-plant plastid genomes have only rarely undergone significant changes in gene content and order. Thus, discovery of additional examples adds power to tests for causes of such genome-scale structural changes.
Methods: Using next-generation sequence data, we assembled the plastid genome of saguaro cactus and probed the nuclear

Premise of the study: Land-plant plastid genomes have only rarely undergone significant changes in gene content and order. Thus, discovery of additional examples adds power to tests for causes of such genome-scale structural changes.
Methods: Using next-generation sequence data, we assembled the plastid genome of saguaro cactus and probed the nuclear genome for transferred plastid genes and functionally related nuclear genes. We combined these results with available data across Cactaceae and seed plants more broadly to infer the history of gene loss and to assess the strength of phylogenetic association between gene loss and loss of the inverted repeat (IR).
Key results: The saguaro plastid genome is the smallest known for an obligately photosynthetic angiosperm (∼113 kb), having lost the IR and plastid ndh genes. This loss supports a statistically strong association across seed plants between the loss of ndh genes and the loss of the IR. Many nonplastid copies of plastid ndh genes were found in the nuclear genome, but none had intact reading frames; nor did three related nuclear-encoded subunits. However, nuclear pgr5, which functions in a partially redundant pathway, was intact.
Conclusions: The existence of an alternative pathway redundant with the function of the plastid NADH dehydrogenase-like complex (NDH) complex may permit loss of the plastid ndh gene suite in photoautotrophs like saguaro. Loss of these genes may be a recurring mechanism for overall plastid genome size reduction, especially in combination with loss of the IR.
ContributorsSanderson, Michael J. (Author) / Copetti, Dario (Author) / Burquez, Alberto (Author) / Bustamante, Enriquena (Author) / Charboneau, Joseph L. M. (Author) / Eguiarte, Luis E. (Author) / Kumar, Sudhir (Author) / Lee, Hyun Oh (Author) / Lee, Junki (Author) / McMahon, Michelle (Author) / Steele, Kelly (Author) / Wing, Rod (Author) / Yang, Tae-Jin (Author) / Zwickl, Derrick (Author) / Wojciechowski, Martin (Author) / College of Integrative Sciences and Arts (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2015-07-01
130351-Thumbnail Image.png
Description

Viral protein U (Vpu) is a type-III integral membrane protein encoded by Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays several roles in viral progeny escape from infected cells, including down-regulation of CD4 receptors. But key structure/function questions remain regarding the mechanisms by which

Viral protein U (Vpu) is a type-III integral membrane protein encoded by Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays several roles in viral progeny escape from infected cells, including down-regulation of CD4 receptors. But key structure/function questions remain regarding the mechanisms by which the Vpu protein contributes to HIV-1 pathogenesis. Here we describe expression of Vpu in bacteria, its purification and characterization. We report the successful expression of PelB-Vpu in Escherichia coli using the leader peptide pectate lyase B (PelB) from Erwinia carotovora. The protein was detergent extractable and could be isolated in a very pure form. We demonstrate that the PelB signal peptide successfully targets Vpu to the cell membranes and inserts it as a type I membrane protein. PelB-Vpu was biophysically characterized by circular dichroism and dynamic light scattering experiments and was shown to be an excellent candidate for elucidating structural models.

ContributorsDeb, Arpan (Author) / Johnson, William (Author) / Kline, Alexander (Author) / Scott, Boston (Author) / Meador, Lydia (Author) / Srinivas, Dustin (Author) / Martin Garcia, Jose Manuel (Author) / Dorner, Katerina (Author) / Borges, Chad (Author) / Misra, Rajeev (Author) / Hogue, Brenda (Author) / Fromme, Petra (Author) / Mor, Tsafrir (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Biodesign Institute (Contributor) / School of Molecular Sciences (Contributor) / Applied Structural Discovery (Contributor) / Personalized Diagnostics (Contributor)
Created2017-02-22
130285-Thumbnail Image.png
Description
Carbohydrates are one of the four main building blocks of life, and are categorized as monosaccharides (sugars), oligosaccharides and polysaccharides. Each sugar can exist in two alternative anomers (in which a hydroxy group at C-1 takes different orientations) and each pair of sugars can form different epimers (isomers around the

Carbohydrates are one of the four main building blocks of life, and are categorized as monosaccharides (sugars), oligosaccharides and polysaccharides. Each sugar can exist in two alternative anomers (in which a hydroxy group at C-1 takes different orientations) and each pair of sugars can form different epimers (isomers around the stereocentres connecting the sugars). This leads to a vast combinatorial complexity, intractable to mass spectrometry and requiring large amounts of sample for NMR characterization. Combining measurements of collision cross section with mass spectrometry (IM–MS) helps, but many isomers are still difficult to separate. Here, we show that recognition tunnelling (RT) can classify many anomers and epimers via the current fluctuations they produce when captured in a tunnel junction functionalized with recognition molecules. Most importantly, RT is a nanoscale technique utilizing sub-picomole quantities of analyte. If integrated into a nanopore, RT would provide a unique approach to sequencing linear polysaccharides.
ContributorsIm, Jong One (Author) / Biswas, Sovan (Author) / Liu, Hao (Author) / Zhao, Yanan (Author) / Sen, Suman (Author) / Biswas, Sudipta (Author) / Ashcroft, Brian (Author) / Borges, Chad (Author) / Wang, Xu (Author) / Lindsay, Stuart (Author) / Zhang, Peiming (Author) / Biodesign Institute (Contributor) / Single Molecule Biophysics (Contributor) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor) / School of Molecular Sciences (Contributor)
Created2016-12-21