Matching Items (2)
Filtering by

Clear all filters

134706-Thumbnail Image.png
Description
Open source image analytics and data mining software are widely available but can be overly-complicated and non-intuitive for medical physicians and researchers to use. The ASU-Mayo Clinic Imaging Informatics Lab has developed an in-house pipeline to process medical images, extract imaging features, and develop multi-parametric models to assist disease staging

Open source image analytics and data mining software are widely available but can be overly-complicated and non-intuitive for medical physicians and researchers to use. The ASU-Mayo Clinic Imaging Informatics Lab has developed an in-house pipeline to process medical images, extract imaging features, and develop multi-parametric models to assist disease staging and diagnosis. The tools have been extensively used in a number of medical studies including brain tumor, breast cancer, liver cancer, Alzheimer's disease, and migraine. Recognizing the need from users in the medical field for a simplified interface and streamlined functionalities, this project aims to democratize this pipeline so that it is more readily available to health practitioners and third party developers.
ContributorsBaer, Lisa Zhou (Author) / Wu, Teresa (Thesis director) / Wang, Yalin (Committee member) / Computer Science and Engineering Program (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
165711-Thumbnail Image.png
Description
The Population Receptive Field (pRF) model is widely used to predict the location (retinotopy) and size of receptive fields on the visual space. Doing so allows for the creation of a mapping from locations in the visual field to the associated groups of neurons in the cortical region (within the

The Population Receptive Field (pRF) model is widely used to predict the location (retinotopy) and size of receptive fields on the visual space. Doing so allows for the creation of a mapping from locations in the visual field to the associated groups of neurons in the cortical region (within the visual cortex of the brain). However, using the pRF model is very time consuming. Past research has focused on the creation of Convolutional Neural Networks (CNN) to mimic the pRF model in a fraction of the time, and they have worked well under highly controlled conditions. However, these models have not been thoroughly tested on real human data. This thesis focused on adapting one of these CNNs to accurately predict the retinotopy of a real human subject using a dataset from the Human Connectome Project. The results show promise towards creating a fully functioning CNN, but they also expose new challenges that must be overcome before the model could be used to predict the retinotopy of new human subjects.
ContributorsBurgard, Braeden (Author) / Wang, Yalin (Thesis director) / Ta, Duyan (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05