Matching Items (53)
Filtering by

Clear all filters

158886-Thumbnail Image.png
Description
I present my work on a scalable and programmable I/O controller for region-based computing, which will be used in a rhythmic pixel-based camera pipeline. I provide a breakdown of the development and design of the I/O controller and how it fits in to rhythmic pixel regions, along with a studyon

I present my work on a scalable and programmable I/O controller for region-based computing, which will be used in a rhythmic pixel-based camera pipeline. I provide a breakdown of the development and design of the I/O controller and how it fits in to rhythmic pixel regions, along with a studyon memory traffic of rhythmic pixel regions and how this translates to energy efficiency. This rhythmic pixel region-based camera pipeline has been jointly developed through Dr. Robert LiKamWa’s research lab. High spatiotemporal resolutions allow high precision for vision applications, such as for detecting features for augmented reality or face detection. High spatiotemporal resolution also comes with high memory throughput, leading to higher energy usage. This creates a tradeoff between high precision and energy efficiency, which becomes more important in mobile systems. In addition, not all pixels in a frame are necessary for the vision application, such as pixels that make up the background. Rhythmic pixel regions aim to reduce the tradeoff by creating a pipeline that allows an application developer to specify regions to capture at a non-uniform spatiotemporal resolution. This is accomplished by encoding the incoming image, and only sending the pixels within these specified regions. Later these encoded representations will be decoded to a standard frame representation usable by traditional vision applications. My contribution to this effort has been the design, testing and evaluation of the I/O controller.
ContributorsNguyen, Van (Author) / LiKamWa, Robert (Thesis advisor) / Jayasuriya, Suren (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2020
158896-Thumbnail Image.png
Description
Cameras have become commonplace with wide-ranging applications of phone photography, computer vision, and medical imaging. With a growing need to reduce size and costs while maintaining image quality, the need to look past traditional style of cameras is becoming more apparent. Several non-traditional cameras have shown to be promising options

Cameras have become commonplace with wide-ranging applications of phone photography, computer vision, and medical imaging. With a growing need to reduce size and costs while maintaining image quality, the need to look past traditional style of cameras is becoming more apparent. Several non-traditional cameras have shown to be promising options for size-constraint applications, and while they may offer several advantages, they also usually are limited by image quality degradation due to optical or a need to reconstruct a captured image. In this thesis, we take a look at three of these non-traditional cameras: a pinhole camera, a diffusion-mask lensless camera, and an under-display camera (UDC).

For each of these cases, I present a feasible image restoration pipeline to correct for their particular limitations. For the pinhole camera, I present an early pipeline to allow for practical pinhole photography by reducing noise levels caused by low-light imaging, enhancing exposure levels, and sharpening the blur caused by the pinhole. For lensless cameras, we explore a neural network architecture that performs joint image reconstruction and point spread function (PSF) estimation to robustly recover images captured with multiple PSFs from different cameras. Using adversarial learning, this approach achieves improved reconstruction results that do not require explicit knowledge of the PSF at test-time and shows an added improvement in the reconstruction model’s ability to generalize to variations in the camera’s PSF. This allows lensless cameras to be utilized in a wider range of applications that require multiple cameras without the need to explicitly train a separate model for each new camera. For UDCs, we utilize a multi-stage approach to correct for low light transmission, blur, and haze. This pipeline uses a PyNET deep neural network architecture to perform a majority of the restoration, while additionally using a traditional optimization approach which is then fused in a learned manner in the second stage to improve high-frequency features. I show results from this novel fusion approach that is on-par with the state of the art.
ContributorsRego, Joshua D (Author) / Jayasuriya, Suren (Thesis advisor) / Blain Christen, Jennifer (Thesis advisor) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2020
161561-Thumbnail Image.png
Description
A distributed wireless sensor network (WSN) is a network of a large number of lowcost,multi-functional sensors with power, bandwidth, and memory constraints, operating in remote environments with sensing and communication capabilities. WSNs are a source for a large amount of data and due to the inherent communication and resource constraints, developing a distributed

A distributed wireless sensor network (WSN) is a network of a large number of lowcost,multi-functional sensors with power, bandwidth, and memory constraints, operating in remote environments with sensing and communication capabilities. WSNs are a source for a large amount of data and due to the inherent communication and resource constraints, developing a distributed algorithms to perform statistical parameter estimation and data analysis is necessary. In this work, consensus based distributed algorithms are developed for distributed estimation and processing over WSNs. Firstly, a distributed spectral clustering algorithm to group the sensors based on the location attributes is developed. Next, a distributed max consensus algorithm robust to additive noise in the network is designed. Furthermore, distributed spectral radius estimation algorithms for analog, as well as, digital communication models are developed. The proposed algorithms work for any connected graph topologies. Theoretical bounds are derived and simulation results supporting the theory are also presented.
ContributorsMuniraju, Gowtham (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Spanias, Andreas (Thesis advisor) / Berisha, Visar (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2021