Matching Items (98)
151577-Thumbnail Image.png
Description
A dental exam in twenty-first century America generally includes the taking of radiographs, which are x-ray images of the mouth. These images allow dentists to see structures below the gum line and within the teeth. Having a patient's radiographs on file has become a dental standard of care in many

A dental exam in twenty-first century America generally includes the taking of radiographs, which are x-ray images of the mouth. These images allow dentists to see structures below the gum line and within the teeth. Having a patient's radiographs on file has become a dental standard of care in many states, but x-rays were only discovered a little over 100 years ago. This research analyzes how and why the x-ray image has become a ubiquitous tool in the dental field. Primary literature written by dentists and scientists of the time shows that the x-ray was established in dentistry by the 1950s. Therefore, this thesis tracks the changes in x-ray technological developments, the spread of information and related safety concerns between 1890 and 1955. X-ray technology went from being an accidental discovery to a device commonly purchased by dentists. X-ray information started out in the form of the anecdotes of individuals and led to the formation of large professional groups. Safety concerns of only a few people later became an important facet of new devices. These three major shifts are described by looking at those who prompted the changes; they fall into the categories of people, technological artifacts and institutions. The x-ray became integrated into dentistry as a product of the work of people such as C. Edmund Kells, a proponent of dental x-rays, technological improvements including faster film speed, and the influence of institutions such as Victor X-Ray Company and the American Dental Association. These changes that resulted established a strong foundation of x-ray technology in dentistry. From there, the dental x-ray developed to its modern form.
ContributorsMartinez, Britta (Author) / Ellison, Karin (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Hurlbut, Ben (Committee member) / Arizona State University (Publisher)
Created2013
132219-Thumbnail Image.png
Description
This thesis contains three chapters, all of which involve using culturally inclusive education to explore the experiences of religious undergraduate biology students. The first chapter is an essay entitled "Toward Culturally Inclusive Undergraduate Biology Education," which describes a literature review performed with the aim of characterizing the landscape of cultural

This thesis contains three chapters, all of which involve using culturally inclusive education to explore the experiences of religious undergraduate biology students. The first chapter is an essay entitled "Toward Culturally Inclusive Undergraduate Biology Education," which describes a literature review performed with the aim of characterizing the landscape of cultural competence and related terms for biology educators and biology education researchers. This chapter highlights the use of 16 different terms related to cultural competence and presents these terms, their definitions, and highlights their similarities and differences. This chapter also identifies gaps in the cultural competence literature, and presents a set of recommendations to support better culturally inclusive interventions in undergraduate science education. The second chapter, entitled "Different Evolution Acceptance Instruments Lead to Different Research Findings," describes a study in which the source of 30 years of conflicting research on the relationship between evolution acceptance and evolution understanding was determined. The results of this study showed that different instruments used to measure evolution acceptance sometimes lead to different research results and conclusions. The final chapter, entitled "Believing That Evolution is Atheistic is Associated with Poor Evolution Education Outcomes Among Religious College Students," describes a study characterizing definitions of evolution that religious undergraduate biology students may hold, and examines the impact that those definitions of evolution have on multiple outcome variables. In this study, we found that among the most religious students, those who thought evolution is atheistic were less accepting of evolution, less comfortable learning evolution, and perceived greater conflict between their personal religious beliefs and evolution than those who thought evolution is agnostic.
ContributorsDunlop, Hayley Marie (Author) / Brownell, Sara (Thesis director) / Collins, James (Committee member) / Barnes, M. Elizabeth (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
172898-Thumbnail Image.png
Description

Telomeres are sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling, which could cause irregularities in normal DNA functions. As cells replicate, telomeres shorten at the end of chromosomes, which correlates to senescence or cellular aging. Integral to this process is

Telomeres are sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling, which could cause irregularities in normal DNA functions. As cells replicate, telomeres shorten at the end of chromosomes, which correlates to senescence or cellular aging. Integral to this process is telomerase, which is an enzyme that repairs telomeres and is present in various cells in the human body, especially during human growth and development. Telomeres and telomerase are required for normal human embryonic development because they protect DNA as it completes multiple rounds of replication.

Created2015-02-11
172900-Thumbnail Image.png
Description

In the early twentieth century, Paul Kammerer conducted a series of experiments to demonstrate that organisms could transmit characteristics acquired in their lifetimes to their offspring. In his 1809 publication, zoologist Jean-Baptiste Lamarck had hypothesized that living beings can inherit features their parents or ancestors acquired throughout life. By breeding

In the early twentieth century, Paul Kammerer conducted a series of experiments to demonstrate that organisms could transmit characteristics acquired in their lifetimes to their offspring. In his 1809 publication, zoologist Jean-Baptiste Lamarck had hypothesized that living beings can inherit features their parents or ancestors acquired throughout life. By breeding salamanders, as well as frogs and other organisms, Kammerer tested Lamarck's hypothesis in an attempt to provide evidence for Lamarck's theory of the inheritance of acquired characteristics. In particular, Kammerer argued that the inheritance of acquired characteristics caused species to evolve, and he claimed that his results provided an explanation for evolutionary processes through developmental phenomena.

Created2014-12-30
172901-Thumbnail Image.png
Description

In the first decade of the twentieth century, Paul Kammerer, a zoologist working at the Vivarium in Vienna, Austria, conducted research on developmental mechanisms, including a series of breeding experiments on toads (Alytes obstetricans). Kammerer claimed that his results demonstrated that organisms could transmit acquired characteristics to their offspring.

In the first decade of the twentieth century, Paul Kammerer, a zoologist working at the Vivarium in Vienna, Austria, conducted research on developmental mechanisms, including a series of breeding experiments on toads (Alytes obstetricans). Kammerer claimed that his results demonstrated that organisms could transmit acquired characteristics to their offspring. To explain how evolution occurred, biologist Jean-Baptiste Lamarck in France suggested in his 1809 book that offspring inherited the features their ancestors acquired throughout the lives of those ancestors, a process termed the inheritance of acquired characteristics. Kammerer conducted breeding experiments to test the theory of inheritance of acquired characteristics, which he said described the mechanics of evolution. Additionally, Kammerer's experiments aimed at explaining how development shaped evolutionary processes.

Created2014-12-30
172904-Thumbnail Image.png
Description

Theodora Colborn studied how chemicals affect organisms as they develop and reproduce during the twentieth and twenty first centuries in the US. By the 1940s, researchers had reported that chemicals from agricultural and industrial processes affected how wild organisms developed, but in 1991, Colborn organized the Wingspread Conference in Racine,

Theodora Colborn studied how chemicals affect organisms as they develop and reproduce during the twentieth and twenty first centuries in the US. By the 1940s, researchers had reported that chemicals from agricultural and industrial processes affected how wild organisms developed, but in 1991, Colborn organized the Wingspread Conference in Racine, Wisconsin, at which a group of scientists classed these chemicals as environmentally harmful substances. Colborn and her colleagues called those chemicals endocrine disruptors, as they mimic or block the body's endocrine system. After scientists identified these chimicals and showed that they harm humans and wildlife, US Congress passed several acts to regulate these chemicals and to protect both wildlife and humans from their harmful effects.

Created2014-12-30
172907-Thumbnail Image.png
Description

Friedrich Leopold August Weismann published Das
Keimplasma: eine Theorie der Vererbung (The Germ-Plasm: a
Theory of Heredity, hereafter The Germ-Plasm) while
working at the University of Freiburg in Freiburg, Germany in 1892.
William N. Parker, a professor in the University College of South
Wales and

Friedrich Leopold August Weismann published Das
Keimplasma: eine Theorie der Vererbung (The Germ-Plasm: a
Theory of Heredity, hereafter The Germ-Plasm) while
working at the University of Freiburg in Freiburg, Germany in 1892.
William N. Parker, a professor in the University College of South
Wales and Monmouthshire in Cardiff, UK, translated The
Germ-Plasm into English in 1893. In The Germ-Plasm,
Weismann proposed a theory of heredity based on the concept of the
germ plasm, a substance in the germ cell that carries hereditary information. The
Germ-Plasm compiled Weismann's theoretical work and analyses of
other biologists' experimental work in the 1880s, and it provided a
framework to study development, evolution and heredity. Weismann
anticipated that the germ-plasm theory would enable researchers to
investigate the functions and material of hereditary substances.

Created2015-01-26
172908-Thumbnail Image.png
Description

In the early twentieth century, Paul Kammerer, a zoologist working at the Vivarium in Vienna, Austria, experimented on sea-squirts (Ciona intestinalis). Kammerer claimed that results from his experiments demonstrated that organisms could transmit characteristics that they had acquired in their lifetimes to their offspring. Kammerer conducted breeding experiments on sea-squirts

In the early twentieth century, Paul Kammerer, a zoologist working at the Vivarium in Vienna, Austria, experimented on sea-squirts (Ciona intestinalis). Kammerer claimed that results from his experiments demonstrated that organisms could transmit characteristics that they had acquired in their lifetimes to their offspring. Kammerer conducted breeding experiments on sea-squirts and other organisms at a time when Charles Darwin's 1859 theory of evolution lacked evidence to explain how offspring inherited traits from their parents. In 1809, zoologist Jean-Baptiste Lamarck in France theorized that living beings can inherit the features their parents or ancestors acquired during those ancestor's lifetime, a theory called the inheritance of acquired characteristics. Kammerer attempted to provide evidence for the theory of inheritance of acquired characteristics, which constituted, he argued, the mechanics of evolution. Kammerer claimed that his results could explain evolutionary processes through developmental phenomena.

Created2015-04-13
172916-Thumbnail Image.png
Description

Conrad Hal Waddington's Organisers and Genes, published in 1940, is a summary of available research and theoretical framework for many concepts related to tissue differentiation in the developing embryo. The book is composed of two main conceptual sections. The first section explores the action and nature of the organizer, while

Conrad Hal Waddington's Organisers and Genes, published in 1940, is a summary of available research and theoretical framework for many concepts related to tissue differentiation in the developing embryo. The book is composed of two main conceptual sections. The first section explores the action and nature of the organizer, while the second section delves into genes and their influence on development.

Created2007-10-30
172919-Thumbnail Image.png
Description

Bacteria of the genus Wolbachia are
bacteria that live within the cells of their hosts. They infect a
wide range of arthropods (insects, arachnids, and crustaceans) and
some nematodes (parasitic roundworms). Scientists estimate that
Wolbachia exist in between seventeen percent and seventy-six percent of
arthropods

Bacteria of the genus Wolbachia are
bacteria that live within the cells of their hosts. They infect a
wide range of arthropods (insects, arachnids, and crustaceans) and
some nematodes (parasitic roundworms). Scientists estimate that
Wolbachia exist in between seventeen percent and seventy-six percent of
arthropods and nematodes. The frequency of the bacteria makes them
one of the most widespread parasites. In general, they are divided
into five groups, from A to E, depending of the species of their
host. They cause diverse reproductive and developmental changes on
their numerous invertebrate hosts. Several mechanisms, like the
feminization of the embryo's sexual characters, are involved in
those processes. To reproduce, Wolbachia often exploit their hosts'
reproductive processes. Additionally, they are symbiotic in that they are
necessary for the normal development of organisms in some species

Created2015-01-29