Matching Items (10)
Description

Better methods are necessary to fully account for anthropogenic impacts on ecosystems and the essential services provided by ecosystems that sustain human life. Current methods for assessing sustainability, such as life cycle assessment (LCA), typically focus on easily quantifiable indicators such as air emissions with no accounting for the essential

Better methods are necessary to fully account for anthropogenic impacts on ecosystems and the essential services provided by ecosystems that sustain human life. Current methods for assessing sustainability, such as life cycle assessment (LCA), typically focus on easily quantifiable indicators such as air emissions with no accounting for the essential ecosystem benefits that support human or industrial processes. For this reason, more comprehensive, transparent, and robust methods are necessary for holistic understanding of urban technosphere and ecosphere systems, including their interfaces. Incorporating ecosystem service indicators into LCA is an important step in spanning this knowledge gap.

For urban systems, many built environment processes have been investigated but need to be expanded with life cycle assessment for understanding ecosphere impacts. To pilot these new methods, a material inventory of the building infrastructure of Phoenix, Arizona can be coupled with LCA to gain perspective on the impacts assessment for built structures in Phoenix. This inventory will identify the origins of materials stocks, and the solid and air emissions waste associated with their raw material extraction, processing, and construction and identify key areas of future research necessary to fully account for ecosystem services in urban sustainability assessments. Based on this preliminary study, the ecosystem service impacts of metropolitan Phoenix stretch far beyond the county boundaries. A life cycle accounting of the Phoenix’s embedded building materials will inform policy and decision makers, assist with community education, and inform the urban sustainability community of consequences.

189328-Thumbnail Image.png
Description
Evolution is a key feature of undergraduate biology education: the AmericanAssociation for the Advancement of Science (AAAS) has identified evolution as one of the five core concepts of biology, and it is relevant to a wide array of biology-related careers. If biology instructors want students to use evolution to address scientific challenges post-graduation,

Evolution is a key feature of undergraduate biology education: the AmericanAssociation for the Advancement of Science (AAAS) has identified evolution as one of the five core concepts of biology, and it is relevant to a wide array of biology-related careers. If biology instructors want students to use evolution to address scientific challenges post-graduation, students need to be able to apply evolutionary principles to real-life situations, and accept that the theory of evolution is the best scientific explanation for the unity and diversity of life on Earth. In order to help students progress on both fronts, biology education researchers need surveys that measure evolution acceptance and assessments that measure students’ ability to apply evolutionary concepts. This dissertation improves the measurement of student understanding and acceptance of evolution by (1) developing a novel Evolutionary Medicine Assessment that measures students’ ability to apply the core principles of Evolutionary Medicine to a variety of health-related scenarios, (2) reevaluating existing measures of student evolution acceptance by using student interviews to assess response process validity, and (3) correcting the validity issues identified on the most widely-used measure of evolution acceptance - the Measure of Acceptance of the Theory of Evolution (MATE) - by developing and validating a revised version of this survey: the MATE 2.0.
ContributorsMisheva, Anastasia Taya (Author) / Brownell, Sara (Thesis advisor) / Barnes, Elizabeth (Committee member) / Collins, James (Committee member) / Cooper, Katelyn (Committee member) / Sterner, Beckett (Committee member) / Arizona State University (Publisher)
Created2023
127913-Thumbnail Image.png
Description

This study assesses whether multifunctional edible landscaping business models provide a sufficient business case at enterprise and city scales to justify widespread implementation. First, semi-structured interviews were conducted with four landscaping entrepreneurs, and the information obtained from the interviews was utilized to carry out a business model comparison with the

This study assesses whether multifunctional edible landscaping business models provide a sufficient business case at enterprise and city scales to justify widespread implementation. First, semi-structured interviews were conducted with four landscaping entrepreneurs, and the information obtained from the interviews was utilized to carry out a business model comparison with the Business Model Canvas framework. The comparison showed that the landscaping enterprises using multifunctional edible landscaping methods possessed a greater range of value propositions and revenue streams, enhancing their competitive advantage. Second, a GIS landscape analysis of seven Phoenix metro area cities was carried out to identify landscapes that were suited for becoming multifunctional edible landscapes. The GIS analysis identified single family residential, residential recreational open space, municipal parks, and municipal schools as being suitable landscapes, and that the area of these landscapes in the seven cities exceeded 180,000 acres. Third, scenarios were created using interview and GIS data to estimate potential value creation and return on investment of implementing multifunctional edible landscaping in the cities of interest. The scenarios found that the potential value creation of edible landscaping ranged between $3.9 and $66 billion, and that positive return on investment (ROI) could be achieved in 11 out of 12 scenarios within one to five years. Finally, the paper concludes by discussing potential long-term implications of implementing multifunctional edible urban landscaping, as well as possible future directions for multifunctional landscaping business model development and research.

Created2017-12-12
127828-Thumbnail Image.png
Description

Small commercial buildings, or those comprising less than 50,000 square feet of floor area, make up 90% of the total number of buildings in the United States. Though these buildings currently account for less than 50% of total energy consumption in the U.S., this statistic is expected to change as

Small commercial buildings, or those comprising less than 50,000 square feet of floor area, make up 90% of the total number of buildings in the United States. Though these buildings currently account for less than 50% of total energy consumption in the U.S., this statistic is expected to change as larger commercial buildings become more efficient and thus account for a smaller percentage of commercial building energy consumption. This paper describes the efforts of a multi-organization collaboration and their demonstration partners in developing a library of case studies that promote and facilitate energy efficiency in the small commercial buildings market as well as a case study template that standardized the library. Case studies address five identified barriers to energy efficiency in the small commercial market, specifically lack of: 1) access to centralized, comprehensive, and consistent information about how to achieve energy targets, 2) reasonably achievable energy targets, 3) access to tools that measure buildings’ progress toward targets, 4) financial incentives that make the reduction effort attractive, and 5) effective models of how disparate stakeholders can collaborate in commercial centers to reach targets. The case study library can be organized by location, ownership type, decision criteria, building type, project size, energy savings, end uses impacted, and retrofit measures. This paper discusses the process of developing the library and case study template. Finally, the paper presents next steps in demonstrating the efficacy of the library and explores energy savings potential from broad implementation.

ContributorsBarnes, Elizabeth (Author) / Parrish, Kristen (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-09-14
Description

As the number of heat waves are expected to increase significantly into the future in the U.S. Southwest, new insight is needed into how urban infrastructure can be repositioned to protect people. In the Phoenix metro area infrastructure have largely been deployed over the past half century, during a time

As the number of heat waves are expected to increase significantly into the future in the U.S. Southwest, new insight is needed into how urban infrastructure can be repositioned to protect people. In the Phoenix metro area infrastructure have largely been deployed over the past half century, during a time when climate change was not a concern. Now, as the county struggles to protect people from heat, there is a need to reassess how existing and new infrastructure can be positioned to reduce health impacts while improving sustainability. Using a neighborhood in Mesa, Arizona as a case study, we assess how changes to transportation infrastructure, building infrastructure, and landscaping can reduce heat exposure. A number of strategies are considered including the optimal deployment of heat refuges, deploying less convective surface materials, and deploying more thermally preferable building materials. The suite of strategies could be considered by cities throughout the Phoenix metro area.

Description

Phoenix is the sixth most populated city in the United States and the 12th largest metropolitan area by population, with about 4.4 million people. As the region continues to grow, the demand for housing and jobs within the metropolitan area is projected to rise under uncertain climate conditions.

Undergraduate and graduate

Phoenix is the sixth most populated city in the United States and the 12th largest metropolitan area by population, with about 4.4 million people. As the region continues to grow, the demand for housing and jobs within the metropolitan area is projected to rise under uncertain climate conditions.

Undergraduate and graduate students from Engineering, Sustainability, and Urban Planning in ASU’s Urban Infrastructure Anatomy and Sustainable Development course evaluated the water, energy, and infrastructure changes that result from smart growth in Phoenix, Arizona. The Maricopa Association of Government's Sustainable Transportation and Land Use Integration Study identified a market for 485,000 residential dwelling units in the urban core. Household water and energy use changes, changes in infrastructure needs, and financial and economic savings are assessed along with associated energy use and greenhouse gas emissions.

The course project has produced data on sustainable development in Phoenix and the findings will be made available through ASU’s Urban Sustainability Lab.

ContributorsNahlik, Matthew (Author) / Chester, Mikhail Vin (Author) / Andrade, Luis (Author) / Archer, Melissa (Author) / Barnes, Elizabeth (Author) / Beguelin, Maria (Author) / Bonilla, Luis (Author) / Bubenheim, Stephanie (Author) / Burillo, Daniel (Author) / Cano, Alex (Author) / Guiley, Keith (Author) / Hamad, Moayyad (Author) / Heck, John (Author) / Helble, Parker (Author) / Hsu, Will (Author) / Jensen, Tate (Author) / Kannappan, Babu (Author) / Kirtley, Kelley (Author) / LaGrou, Nick (Author) / Loeber, Jessica (Author) / Mann, Chelsea (Author) / Monk, Shawn (Author) / Paniagua, Jaime (Author) / Prasad, Saransh (Author) / Stafford, Nicholas (Author) / Unger, Scott (Author) / Volo, Tom (Author) / Watson, Mathew (Author) / Woodruff, Abbie (Author) / Arizona State University. School of Sustainable Engineering and the Built Environment (Contributor) / Arizona State University. Center for Earth Systems Engineering and Management (Contributor)
Description

This LCA used data from a previous LCA done by Chester and Horvath (2012) on the proposed California High Speed Rail, and furthered the LCA to look into potential changes that can be made to the proposed CAHSR to be more resilient to climate change. This LCA focused on the

This LCA used data from a previous LCA done by Chester and Horvath (2012) on the proposed California High Speed Rail, and furthered the LCA to look into potential changes that can be made to the proposed CAHSR to be more resilient to climate change. This LCA focused on the energy, cost, and GHG emissions associated with raising the track, adding fly ash to the concrete mixture in place of a percentage of cement, and running the HSR on solar electricity rather than the current electricity mix. Data was collected from a variety of sources including other LCAs, research studies, feasibility studies, and project information from companies, agencies, and researchers in order to determine what the cost, energy requirements, and associated GHG emissions would be for each of these changes. This data was then used to calculate results of cost, energy, and GHG emissions for the three different changes. The results show that the greatest source of cost is the raised track (Design/Construction Phase), and the greatest source of GHG emissions is the concrete (also Design/Construction Phase).

Created2014-06-13
141020-Thumbnail Image.png
Description

In the spring of 2016, The City of Apache Junction partnered with the School of Geographical Sciences and Urban Planning at Arizona State University on three forward-thinking plans for development in Apache Junction. Graduate students in the Urban and Environmental Planning program worked alongside City staff, elected officials and the

In the spring of 2016, The City of Apache Junction partnered with the School of Geographical Sciences and Urban Planning at Arizona State University on three forward-thinking plans for development in Apache Junction. Graduate students in the Urban and Environmental Planning program worked alongside City staff, elected officials and the public to identify opportunities and visions for:

1. Multi-modal access and connectivity improvements for City streets and open space.
2. Downtown development.
3. A master-planned community on state land south of the U.S. 60.

The following sections of the report present Apache Junction’s unique characteristics, current resident demographics, development needs and implementation strategies for each project:

1. Community Profile
2. Trail Connectivity Master Plan
3. Downtown Visioning
4. State Land Visioning

The Trail Connectivity Master Plan optimizes existing trails and wide road shoulders to improve multi-modal connections across the city. The proposed connections emphasize access to important recreation, education and other community facilities for pedestrians, equestrians and bicycles. Trail and lane designs recommend vegetated buffers, wherever possible, to improve traveler safety and comfort. The proposals also increase residents’ interaction with open space along urban-rural trails and park linkages to preserve opportunities to engage with nature. The objectives of the report are accomplished through three goals: connectivity, safety improvements and open space preservation.

Downtown Visioning builds on a large body of conceptual design work for Apache Junction’s downtown area along Idaho Road and Apache Trail. This report identifies three goals: to establish a town center, reestablish the grid systems while maintaining a view of the Superstition Mountains, and create an identity and sense of place for the downtown.

State Land Visioning addresses a tract of land, approximately 25 square miles in area, south of the U.S. 60. The main objective is to facilitate growth and proper development in accordance with existing goals in Apache Junction’s General Plan. This is accomplished through three goals:

1. Develop a foundation for the creation of an economic corridor along US-60 through preliminary market research and land use planning.
2. Create multi-modal connections between existing development north of US-60 and future recreational space northeast of US-60.
3. Maintain a large ratio of open space to developed area that encompasses existing washes and floodplains using a master planned community framework to provide an example for future land use planning.

ContributorsBarr, Jason (Author) / Bolen, Spencer (Author) / Chen, Dian (Author) / DuBois, Bailey (Author) / Godfrey, Kevin (Author) / Han, Siyuan (Author) / Hawkes, Trevor (Author) / Hu, Shixue (Carol) (Author) / Huang, Zeliu (Author) / Kay, Ryan (Author) / Kim, Joochul (Author) / Klaas, Morgan (Author) / Li, Pai (Author) / Meisenheimer, Joey (Author) / Murray, Kelly-Desirae (Author) / Quintans, Christiane (Author) / Shi, Yichuan (Author) / Smith, Bryan (Author) / Spriegel, Melissa (Author) / Wang, Xueyan (Author) / Wu, Junru (Author)
Created2016-05
Description

In the spring of 2016, the City of Apache Junction partnered with the School of Geographical Sciences and Urban Planning at Arizona State University on three forward-thinking plans for development in Apache Junction. Graduate students in the Urban and Environmental Planning program worked alongside City staff, elected officials and the

In the spring of 2016, the City of Apache Junction partnered with the School of Geographical Sciences and Urban Planning at Arizona State University on three forward-thinking plans for development in Apache Junction. Graduate students in the Urban and Environmental Planning program worked alongside City staff, elected officials and the public to identify opportunities and visions for:
       1. Multi-modal access and connectivity improvements for City streets and open space.
       2. Downtown development.
       3. A master-planned community on state land south of the U.S. 60.

The following sections of the report present Apache Junction’s unique characteristics, current resident demographics, development needs and implementation strategies for each project:
       1. Community Profile
       2. Trail Connectivity Master Plan
       3. Downtown Visioning
       4. State Land Visioning

The Trail Connectivity Master Plan optimizes existing trails and wide road shoulders to improve multi-modal connections across the city. The proposed connections emphasize access to important recreation, education and other community facilities for pedestrians, equestrians and bicycles. Trail and lane designs recommend vegetated buffers, wherever possible, to improve traveler safety and comfort. The proposals also increase residents’ interaction with open space along urban-rural trails and park linkages to preserve opportunities to engage with nature. The objectives of the report are accomplished through three goals: connectivity, safety improvements and open space preservation.

Downtown Visioning builds on a large body of conceptual design work for Apache Junction’s downtown area along Idaho Road and Apache Trail. This report identifies three goals: to establish a town center, to reestablish the grid systems while maintaining a view of the Superstition Mountains, and to create an identity and sense of place for the downtown.

State Land Visioning addresses a tract of land, approximately 25 square miles in area, south of the U.S. 60. The main objective is to facilitate growth and proper development in accordance with existing goals in Apache Junction’s General Plan. This is accomplished through three goals:
       1. Develop a foundation for the creation of an economic corridor along US-60 through
           preliminary market research and land use planning.
       2. Create multi-modal connections between existing development north of US-60 and
           future recreational space northeast of US-60.
       3. Maintain a large ratio of open space to developed area that encompasses existing
           washes and floodplains using a master planned community framework to provide an
           example for future land use planning.