Matching Items (227)
152117-Thumbnail Image.png
Description
With the advent of parallel processing, primarily the time-interleaved pipeline ADCs, high speed and high resolution ADCs became a possibility. When these speeds touch giga samples per second and resolutions go beyond 12-bits, the parallelization becomes more extensive leading to repeated presence of several identical blocks in the architecture. This

With the advent of parallel processing, primarily the time-interleaved pipeline ADCs, high speed and high resolution ADCs became a possibility. When these speeds touch giga samples per second and resolutions go beyond 12-bits, the parallelization becomes more extensive leading to repeated presence of several identical blocks in the architecture. This thesis discusses one such block, the sub-ADC (Flash ADC), of the pipeline and sharing it with more than two of the parallel processing channels thereby reducing area and power and input load capacitance to each stage. This work presents a design of 'sub-ADC shared in a time-interleaved pipeline ADC' in the IBM 8HP process. It has been implemented with an offset-compensated, kickback-compensated, fast decision making (large input bandwidth) and low power comparator that forms the core part of the design.
ContributorsBikkina, Phaneendra Kumar (Author) / Barnaby, Hugh (Thesis advisor) / Mikkola, Esko (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2013
151950-Thumbnail Image.png
Description
Social media offers a powerful platform for the independent digital content producer community to develop, disperse, and maintain their brands. In terms of information systems research, the broad majority of the work has not examined hedonic consumption on Social Media Sites (SMS). The focus has mostly been on the organizational

Social media offers a powerful platform for the independent digital content producer community to develop, disperse, and maintain their brands. In terms of information systems research, the broad majority of the work has not examined hedonic consumption on Social Media Sites (SMS). The focus has mostly been on the organizational perspectives and utilitarian gains from these services. Unlike through traditional commerce channels, including e-commerce retailers, consumption enhancing hedonic utility is experienced differently in the context of a social media site; consequently, the dynamic of the decision-making process shifts when it is made in a social context. Previous research assumed a limited influence of a small, immediate group of peers. But the rules change when the network of peers expands exponentially. The assertion is that, while there are individual differences in the level of susceptibility to influence coming from others, these are not the most important pieces of the analysis--unlike research centered completely on influence. Rather, the context of the consumption can play an important role in the way social influence factors affect consumer behavior on Social Media Sites. Over the course of three studies, this dissertation will examine factors that influence consumer decision-making and the brand personalities created and interpreted in these SMS. Study one examines the role of different types of peer influence on consumer decision-making on Facebook. Study two observes the impact of different types of producer message posts with the different types of influence on decision-making on Twitter. Study three will conclude this work with an exploratory empirical investigation of actual twitter postings of a set of musicians. These studies contribute to the body of IS literature by evaluating the specific behavioral changes related to consumption in the context of digital social media: (a) the power of social influencers in contrast to personal preferences on SMS, (b) the effect on consumers of producer message types and content on SMS at both the profile level and the individual message level.
ContributorsSopha, Matthew (Author) / Santanam, Raghu T (Thesis advisor) / Goul, Kenneth M (Committee member) / Gu, Bin (Committee member) / Arizona State University (Publisher)
Created2013
152396-Thumbnail Image.png
Description
In thesis, a test time reduction (a low cost test) methodology for digitally-calibrated pipeline analog-to-digital converters (ADCs) is presented. A long calibration time is required in the final test to validate performance of these designs. To reduce total test time, optimized calibration technique and calibrated effective number of bits (ENOB)

In thesis, a test time reduction (a low cost test) methodology for digitally-calibrated pipeline analog-to-digital converters (ADCs) is presented. A long calibration time is required in the final test to validate performance of these designs. To reduce total test time, optimized calibration technique and calibrated effective number of bits (ENOB) prediction from calibration coefficient will be presented. With the prediction technique, failed devices can be identified only without actual calibration. This technique reduces significant amount of time for the total test time.
ContributorsKim, Kibeom (Author) / Ozev, Sule (Thesis advisor) / Kitchen, Jennifer (Committee member) / Barnaby, Hugh (Committee member) / Arizona State University (Publisher)
Created2013
150737-Thumbnail Image.png
Description
During the last decades the development of the transistor and its continuous down-scaling allowed the appearance of cost effective wireless communication systems. New generation wideband wireless mobile systems demand high linearity, low power consumption and the low cost devices. Traditional RF systems are mainly analog-based circuitry. Contrary to digital circuits,

During the last decades the development of the transistor and its continuous down-scaling allowed the appearance of cost effective wireless communication systems. New generation wideband wireless mobile systems demand high linearity, low power consumption and the low cost devices. Traditional RF systems are mainly analog-based circuitry. Contrary to digital circuits, the technology scaling results in reduction on the maximum voltage swing which makes RF design very challenging. Pushing the interface between the digital and analog boundary of the RF systems closer to the antenna becomes an attractive trend for modern RF devices. In order to take full advantages of the deep submicron CMOS technologies and digital signal processing (DSP), there is a strong trend towards the development of digital transmitter where the RF upconversion is part of the digital-to-analog conversion (DAC). This thesis presents a new digital intermediate frequency (IF) to RF transmitter for 2GHz wideband code division multiple access (W-CDMA). The proposed transmitter integrates a 3-level digital IF current-steering cell, an up-conversion mixer with a tuned load and an RF variable gain amplifier (RF VGA) with an embedded finite impulse response (FIR) reconstruction filter in the up-conversion path. A 4th-order 1.5-bit IF bandpass sigma delta modulator (BP SDM) is designed to support in-band SNR while the out-of-band quantization noise due to the noise shaping is suppressed by the embedded reconstruction filter to meet spectrum emission mask and ACPR requirements. The RF VGA provides 50dB power scaling in 10-dB steps with less than 1dB gain error. The design is fabricated in a 0.18um CMOS technology with a total core area of 0.8 x 1.6 mm2. The IC delivers 0dBm output power at 2GHz and it draws approximately 120mA from a 1.8V DC supply at the maximum output power. The measurement results proved that a digital-intensive digital IF to RF converter architecture can be successfully employed for WCDMA transmitter application.
ContributorsHan, Yongping (Author) / Kiaei, Sayfe (Thesis advisor) / Yu, Hongyu (Committee member) / Bakkaloglu, Bertan (Committee member) / Aberle, James T., 1961- (Committee member) / Barnaby, Hugh (Committee member) / Arizona State University (Publisher)
Created2012
150540-Thumbnail Image.png
Description
In today's world there is a great need for sensing methods as tools to provide critical information to solve today's problems in security applications. Real time detection of trace chemicals, such as explosives, in a complex environment containing various interferents using a portable device that can be reliably deployed in

In today's world there is a great need for sensing methods as tools to provide critical information to solve today's problems in security applications. Real time detection of trace chemicals, such as explosives, in a complex environment containing various interferents using a portable device that can be reliably deployed in a field has been a difficult challenge. A hybrid nanosensor based on the electrochemical reduction of trinitrotoluene (TNT) and the interaction of the reduction products with conducting polymer nanojunctions in an ionic liquid was fabricated. The sensor simultaneously measures the electrochemical current from the reduction of TNT and the conductance change of the polymer nanojunction caused from the reduction product. The hybrid detection mechanism, together with the unique selective preconcentration capability of the ionic liquid, provides a selective, fast, and sensitive detection of TNT. The sensor, in its current form, is capable of detecting parts per trillion level TNT in the presence of various interferents within a few minutes. A novel hybrid electrochemical-colorimetric (EC-C) sensing platform was also designed and fabricated to meet these challenges. The hybrid sensor is based on electrochemical reactions of trace explosives, colorimetric detection of the reaction products, and unique properties of the explosives in an ionic liquid (IL). This approach affords not only increased sensitivity but also selectivity as evident from the demonstrated null rate of false positives and low detection limits. Using an inexpensive webcam a detection limit of part per billion in volume (ppbV) has been achieved and demonstrated selective detection of explosives in the presence of common interferences (perfumes, mouth wash, cleaners, petroleum products, etc.). The works presented in this dissertation, were published in the Journal of the American Chemical Society (JACS, 2009) and Nano Letters (2010), won first place in the National Defense Research contest in (2009) and has been granted a patent (WO 2010/030874 A1). In addition, other work related to conductive polymer junctions and their sensing capabilities has been published in Applied Physics Letters (2005) and IEEE sensors journal (2008).
ContributorsDiaz Aguilar, Alvaro (Author) / Tao, Nongjian (Thesis advisor) / Tsui, Raymond (Committee member) / Barnaby, Hugh (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012
150776-Thumbnail Image.png
Description
The front end of almost all ADCs consists of a Sample and Hold Circuit in order to make sure a constant analog value is digitized at the end of ADC. The design of Track and Hold Circuit (THA) mainly focuses on following parameters: Input frequency, Sampling frequency, dynamic Range, hold

The front end of almost all ADCs consists of a Sample and Hold Circuit in order to make sure a constant analog value is digitized at the end of ADC. The design of Track and Hold Circuit (THA) mainly focuses on following parameters: Input frequency, Sampling frequency, dynamic Range, hold pedestal, feed through error. This thesis will discuss the importance of these parameters of a THA to the ADCs and commonly used architectures of THA. A new architecture with SiGe HBT transistors in BiCMOS 130 nm technology is presented here. The proposed topology without complicated circuitry achieves high Spurious Free Dynamic Range(SFDR) and Total Harmonic Distortion (THD).These are important figure of merits for any THA which gives a measure of non-linearity of the circuit. The proposed topology is implemented in IBM8HP 130 nm BiCMOS process combines typical emitter follower switch in bipolar THAs and output steering technique proposed in the previous work. With these techniques and the cascode transistor in the input which is used to isolate the switch from the input during the hold mode, better results have been achieved. The THA is designed to work with maximum input frequency of 250 MHz at sampling frequency of 500 MHz with input currents not more than 5mA achieving an SFDR of 78.49 dB. Simulation and results are presented, illustrating the advantages and trade-offs of the proposed topology.
ContributorsRao, Nishita Ramakrishna (Author) / Barnaby, Hugh (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Christen, Jennifer Blain (Committee member) / Arizona State University (Publisher)
Created2012
150529-Thumbnail Image.png
Description
The non-quasi-static (NQS) description of device behavior is useful in fast switching and high frequency circuit applications. Hence, it is necessary to develop a fast and accurate compact NQS model for both large-signal and small-signal simulations. A new relaxation-time-approximation based NQS MOSFET model, consistent between transient and small-signal simulations, has

The non-quasi-static (NQS) description of device behavior is useful in fast switching and high frequency circuit applications. Hence, it is necessary to develop a fast and accurate compact NQS model for both large-signal and small-signal simulations. A new relaxation-time-approximation based NQS MOSFET model, consistent between transient and small-signal simulations, has been developed for surface-potential-based MOSFET compact models. The new model is valid for all regions of operation and is compatible with, and at low frequencies recovers, the quasi-static (QS) description of the MOSFET. The model is implemented in two widely used circuit simulators and tested for speed and convergence. It is verified by comparison with technology computer aided design (TCAD) simulations and experimental data, and by application of a recently developed benchmark test for NQS MOSFET models. In addition, a new and simple technique to characterize NQS and gate resistance, Rgate, MOS model parameters from measured data has been presented. In the process of experimental model verification, the effects of bulk resistance on MOSFET characteristics is investigated both theoretically and experimentally to separate it from the NQS effects.
ContributorsZhu, Zeqin (Author) / Gildenblat, Gennady (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Barnaby, Hugh (Committee member) / Mcandrew, Colin C (Committee member) / Arizona State University (Publisher)
Created2012
150994-Thumbnail Image.png
Description
Lateral Double-diffused (LDMOS) transistors are commonly used in power management, high voltage/current, and RF circuits. Their characteristics include high breakdown voltage, low on-resistance, and compatibility with standard CMOS and BiCMOS manufacturing processes. As with other semiconductor devices, an accurate and physical compact model is critical for LDMOS-based circuit design. The

Lateral Double-diffused (LDMOS) transistors are commonly used in power management, high voltage/current, and RF circuits. Their characteristics include high breakdown voltage, low on-resistance, and compatibility with standard CMOS and BiCMOS manufacturing processes. As with other semiconductor devices, an accurate and physical compact model is critical for LDMOS-based circuit design. The goal of this research work is to advance the state-of-the-art by developing a physics-based scalable compact model of LDMOS transistors. The new model, SP-HV, is constructed from a surface-potential-based bulk MOSFET model, PSP, and a nonlinear resistor model, R3. The use of independently verified and mature sub-models leads to increased accuracy and robustness of an overall LDMOS model. Improved geometry scaling and simplified statistical modeling are other useful and practical consequences of the approach. Extensions are made to both PSP and R3 for improved modeling of LDMOS devices, and one internal node is introduced to connect the two component models. The presence of the lightly-doped drift region in LDMOS transistors causes some characteristic device effects which are usually not observed in conventional MOSFETs. These include quasi-saturation, a sharp peak in transconductance at low VD, gate capacitance exceeding oxide capacitance at positive VD, negative transcapacitances CBG and CGB at positive VD, a "double-hump" IB(VG) current and expansion effects. SP-HV models these effects accurately. It also includes a scalable self-heating model which is important to model the geometry dependence of the expansion effect. SP-HV, including its scalability, is verified extensively by comparison both to TCAD simulations and experimental data. The close agreement confirms the validity of the model structure. Circuit simulation examples are presented to demonstrate its convergence.
ContributorsYao, Wei (Author) / Gildenblat, Gennady (Thesis advisor) / Barnaby, Hugh (Committee member) / Cao, Yu (Committee member) / McAndrew, Colin (Committee member) / Arizona State University (Publisher)
Created2012
151182-Thumbnail Image.png
Description
ABSTRACT As the technology length shrinks down, achieving higher gain is becoming very difficult in deep sub-micron technologies. As the supply voltages drop, cascodes are very difficult to implement and cascade amplifiers are needed to achieve sufficient gain with required output swing. This sets the fundamental limit on the SNR

ABSTRACT As the technology length shrinks down, achieving higher gain is becoming very difficult in deep sub-micron technologies. As the supply voltages drop, cascodes are very difficult to implement and cascade amplifiers are needed to achieve sufficient gain with required output swing. This sets the fundamental limit on the SNR and hence the maximum resolution that can be achieved by ADC. With the RSD algorithm and the range overlap, the sub ADC can tolerate large comparator offsets leaving the linearity and accuracy requirement for the DAC and residue gain stage. Typically, the multiplying DAC requires high gain wide bandwidth op-amp and the design of this high gain op-amp becomes challenging in the deep submicron technologies. This work presents `A 12 bit 25MSPS 1.2V pipelined ADC using split CLS technique' in IBM 130nm 8HP process using only CMOS devices for the application of Large Hadron Collider (LHC). CLS technique relaxes the gain requirement of op-amp and improves the signal-to-noise ratio without increase in power or input sampling capacitor with rail-to-rail swing. An op-amp sharing technique has been incorporated with split CLS technique which decreases the number of op-amps and hence the power further. Entire pipelined converter has been implemented as six 2.5 bit RSD stages and hence decreases the latency associated with the pipelined architecture - one of the main requirements for LHC along with the power requirement. Two different OTAs have been designed to use in the split-CLS technique. Bootstrap switches and pass gate switches are used in the circuit along with a low power dynamic kick-back compensated comparator.
ContributorsSwaminathan, Visu Vaithiyanathan (Author) / Barnaby, Hugh (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Christen, Jennifer Blain (Committee member) / Arizona State University (Publisher)
Created2012
149308-Thumbnail Image.png
Description
The existing compact models can reproduce the characteristics of MOSFETs in the temperature range of -40oC to 125oC. Some applications require circuits to operate over a wide temperature range consisting of temperatures below the specified range of existing compact models, requiring wide temperature range compact models for the design of

The existing compact models can reproduce the characteristics of MOSFETs in the temperature range of -40oC to 125oC. Some applications require circuits to operate over a wide temperature range consisting of temperatures below the specified range of existing compact models, requiring wide temperature range compact models for the design of such circuits. In order to develop wide temperature range compact models, fourteen different geometries of n-channel and p-channel MOSFETs manufactured in a 0.18μm mixed-signal process were electrically characterized over a temperature range of 40 K to 298 K. Electrical characterization included ID-VG and ID-VD under different drain, body and gate biases respectively. The effects of low-temperature operation on the performance of 0.18μm MOSFETs have been studied and discussed in terms of sub-threshold characteristics, threshold voltage, the effect of the body bias and linearity of the device. As it is well understood, the subthreshold slope, the threshold voltage, drive currents of the MOSFETs increase when the temperature of the MOSFETs is lowered, which makes it advantageous to operate the MOSFETs at low-temperatures. However the internal linearity gm1/gm3 of the MOSFETs degrades as the temperature of the MOSFETs is lowered, and the performance of the MOSFETs can be affected by the interface traps that exist in higher density close to conduction band and valence band energy levels, as the Fermi-level moves closer to bandgap edges when MOSFETs are operated at cryogenic temperatures.
ContributorsKathuria, Achal (Author) / Barnaby, Hugh (Thesis advisor) / Schroder, Dieter K. (Committee member) / Vermeire, Bert (Committee member) / Arizona State University (Publisher)
Created2010