Matching Items (33)
Filtering by

Clear all filters

141463-Thumbnail Image.png
Description

Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of

Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of the mice varied from 12 mm3 to 62 mm3, even though mice were inoculated from the same tumor cell line under carefully controlled conditions. We generated hypotheses to explore large variances in final tumor size and tested them with our simple reaction-diffusion model in both a 3-dimensional (3D) finite difference method and a 2-dimensional (2D) level set method. The parameters obtained from a best-fit procedure, designed to yield simulated tumors as close as possible to the observed ones, vary by an order of magnitude between the three mice analyzed in detail. These differences may reflect morphological and biological variability in tumor growth, as well as errors in the mathematical model, perhaps from an oversimplification of the tumor dynamics or nonidentifiability of parameters. Our results generate parameters that match other experimental in vitro and in vivo measurements. Additionally, we calculate wave speed, which matches with other rat and human measurements.

ContributorsRutter, Erica (Author) / Stepien, Tracy (Author) / Anderies, Barrett (Author) / Plasencia, Jonathan (Author) / Woolf, Eric C. (Author) / Scheck, Adrienne C. (Author) / Turner, Gregory H. (Author) / Liu, Qingwei (Author) / Frakes, David (Author) / Kodibagkar, Vikram (Author) / Kuang, Yang (Author) / Preul, Mark C. (Author) / Kostelich, Eric (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-31
Description

We present results from experiments at the Linac Coherent Light Source (LCLS) demonstrating that serial femtosecond crystallography (SFX) can be performed to high resolution (~2.5 Å) using protein microcrystals deposited on an ultra-thin silicon nitride membrane and embedded in a preservation medium at room temperature. Data can be acquired at

We present results from experiments at the Linac Coherent Light Source (LCLS) demonstrating that serial femtosecond crystallography (SFX) can be performed to high resolution (~2.5 Å) using protein microcrystals deposited on an ultra-thin silicon nitride membrane and embedded in a preservation medium at room temperature. Data can be acquired at a high acquisition rate using x-ray free electron laser sources to overcome radiation damage, while sample consumption is dramatically reduced compared to flowing jet methods. We achieved a peak data acquisition rate of 10 Hz with a hit rate of ~38%, indicating that a complete data set could be acquired in about one 12-hour LCLS shift using the setup described here, or in even less time using hardware optimized for fixed target SFX. This demonstration opens the door to ultra low sample consumption SFX using the technique of diffraction-before-destruction on proteins that exist in only small quantities and/or do not produce the copious quantities of microcrystals required for flowing jet methods.

ContributorsHunter, Mark S. (Author) / Segelke, Brent (Author) / Messerschmidt, Marc (Author) / Williams, Garth J. (Author) / Zatsepin, Nadia (Author) / Barty, Anton (Author) / Benner, W. Henry (Author) / Carlson, David B. (Author) / Coleman, Matthew (Author) / Graf, Alexander (Author) / Hau-Riege, Stefan P. (Author) / Pardini, Tommaso (Author) / Seibert, M. Marvin (Author) / Evans, James (Author) / Boutet, Sebastien (Author) / Frank, Matthias (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-12
129586-Thumbnail Image.png
Description

Recently fabricated two-dimensional phosphorene crystal structures have demonstrated great potential in applications of electronics. In this paper, strain effect on the electronic band structure of phosphorene was studied using first-principles methods including density functional theory (DFT) and hybrid functionals. It was found that phosphorene can withstand a tensile stress and

Recently fabricated two-dimensional phosphorene crystal structures have demonstrated great potential in applications of electronics. In this paper, strain effect on the electronic band structure of phosphorene was studied using first-principles methods including density functional theory (DFT) and hybrid functionals. It was found that phosphorene can withstand a tensile stress and strain up to 10 N/m and 30%, respectively. The band gap of phosphorene experiences a direct-indirect-direct transition when axial strain is applied. A moderate −2% compression in the zigzag direction can trigger this gap transition. With sufficient expansion (+11.3%) or compression (−10.2% strains), the gap can be tuned from indirect to direct again. Five strain zones with distinct electronic band structure were identified, and the critical strains for the zone boundaries were determined. Although the DFT method is known to underestimate band gap of semiconductors, it was proven to correctly predict the strain effect on the electronic properties with validation from a hybrid functional method in this work. The origin of the gap transition was revealed, and a general mechanism was developed to explain energy shifts with strain according to the bond nature of near-band-edge electronic orbitals. Effective masses of carriers in the armchair direction are an order of magnitude smaller than that of the zigzag axis, indicating that the armchair direction is favored for carrier transport. In addition, the effective masses can be dramatically tuned by strain, in which its sharp jump/drop occurs at the zone boundaries of the direct-indirect gap transition.

ContributorsPeng, Xihong (Author) / Wei, Qun (Author) / Copple, Andrew (Author) / College of Integrative Sciences and Arts (Contributor)
Created2014-08-04
129538-Thumbnail Image.png
Description

Gompertz’s empirical equation remains the most popular one in describing cancer cell population growth in a wide spectrum of bio-medical situations due to its good fit to data and simplicity. Many efforts were documented in the literature aimed at understanding the mechanisms that may support Gompertz’s elegant model equation. One

Gompertz’s empirical equation remains the most popular one in describing cancer cell population growth in a wide spectrum of bio-medical situations due to its good fit to data and simplicity. Many efforts were documented in the literature aimed at understanding the mechanisms that may support Gompertz’s elegant model equation. One of the most convincing efforts was carried out by Gyllenberg and Webb. They divide the cancer cell population into the proliferative cells and the quiescent cells. In their two dimensional model, the dead cells are assumed to be removed from the tumor instantly. In this paper, we modify their model by keeping track of the dead cells remaining in the tumor. We perform mathematical and computational studies on this three dimensional model and compare the model dynamics to that of the model of Gyllenberg and Webb. Our mathematical findings suggest that if an avascular tumor grows according to our three-compartment model, then as the death rate of quiescent cells decreases to zero, the percentage of proliferative cells also approaches to zero. Moreover, a slow dying quiescent population will increase the size of the tumor. On the other hand, while the tumor size does not depend on the dead cell removal rate, its early and intermediate growth stages are very sensitive to it.

ContributorsAlzahrani, E. O. (Author) / Asiri, Asim (Author) / El-Dessoky, M. M. (Author) / Kuang, Yang (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-01
129540-Thumbnail Image.png
Description

The role of ambiguity tolerance in career decision making was examined in a sample of college students (n = 275). Three hypotheses were proposed regarding the direct prediction of ambiguity tolerance on career indecision, the indirect prediction of ambiguity tolerance on career indecision through environmental and self explorations, and the

The role of ambiguity tolerance in career decision making was examined in a sample of college students (n = 275). Three hypotheses were proposed regarding the direct prediction of ambiguity tolerance on career indecision, the indirect prediction of ambiguity tolerance on career indecision through environmental and self explorations, and the moderation effect of ambiguity tolerance on the link of environmental and self explorations with career indecision. Results supported the significance of ambiguity tolerance with respect to career indecision, finding that it directly predicted general indecisiveness, dysfunctional beliefs, lack of information, and inconsistent information, and moderated the prediction of environmental exploration on inconsistent information. The implications of this study are discussed and suggestions for future research are provided.

ContributorsXu, Hui (Author) / Tracey, Terence (Author) / College of Integrative Sciences and Arts (Contributor)
Created2014-08-01
Description

Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which

Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth’s oxygenic atmosphere. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 Å resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the ‘dangler’ Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules.

ContributorsKupitz, Christopher (Author) / Basu, Shibom (Author) / Grotjohann, Ingo (Author) / Fromme, Raimund (Author) / Zatsepin, Nadia (Author) / Rendek, Kimberly (Author) / Hunter, Mark (Author) / Shoeman, Robert L. (Author) / White, Thomas A. (Author) / Wang, Dingjie (Author) / James, Daniel (Author) / Yang, Jay-How (Author) / Cobb, Danielle (Author) / Reeder, Brenda (Author) / Sierra, Raymond G. (Author) / Liu, Haiguang (Author) / Barty, Anton (Author) / Aquila, Andrew L. (Author) / Deponte, Daniel (Author) / Kirian, Richard (Author) / Bari, Sadia (Author) / Bergkamp, Jesse (Author) / Beyerlein, Kenneth R. (Author) / Bogan, Michael J. (Author) / Caleman, Carl (Author) / Chao, Tzu-Chiao (Author) / Conrad, Chelsie (Author) / Davis, Katherine M. (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-09-11
129363-Thumbnail Image.png
Description

Explosive extrusion of cold material from the interior of icy bodies, or cryovolcanism, has been observed on Enceladus and, perhaps, Europa, Triton, and Ceres. It may explain the observed evidence for a young surface on Charon (Pluto’s surface is masked by frosts). Here, we evaluate prerequisites for cryovolcanism on dwarf

Explosive extrusion of cold material from the interior of icy bodies, or cryovolcanism, has been observed on Enceladus and, perhaps, Europa, Triton, and Ceres. It may explain the observed evidence for a young surface on Charon (Pluto’s surface is masked by frosts). Here, we evaluate prerequisites for cryovolcanism on dwarf planet-class Kuiper belt objects (KBOs). We first review the likely spatial and temporal extent of subsurface liquid, proposed mechanisms to overcome the negative buoyancy of liquid water in ice, and the volatile inventory of KBOs. We then present a new geochemical equilibrium model for volatile exsolution and its ability to drive upward crack propagation. This novel approach bridges geophysics and geochemistry, and extends geochemical modeling to the seldom-explored realm of liquid water at subzero temperatures. We show that carbon monoxide (CO) is a key volatile for gas-driven fluid ascent; whereas CO2 and sulfur gases only play a minor role. N2, CH4, and H2 exsolution may also drive explosive cryovolcanism if hydrothermal activity produces these species in large amounts (a few percent with respect to water). Another important control on crack propagation is the internal structure: a hydrated core makes explosive cryovolcanism easier, but an undifferentiated crust does not. We briefly discuss other controls on ascent such as fluid freezing on crack walls, and outline theoretical advances necessary to better understand cryovolcanic processes. Finally, we make testable predictions for the 2015 New Horizons flyby of the Pluto-Charon system.

ContributorsNeveu, Marc (Author) / Desch, Steven (Author) / Shock, Everett (Author) / Glein, C. R. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-01-15
129243-Thumbnail Image.png
Description

It has been suggested that the extended intensity profiles surrounding Bragg reflections that arise when a series of finite crystals of varying size and shape are illuminated by the intense, coherent illumination of an x-ray free-electron laser may enable the crystal’s unit-cell electron density to be obtained ab initio via

It has been suggested that the extended intensity profiles surrounding Bragg reflections that arise when a series of finite crystals of varying size and shape are illuminated by the intense, coherent illumination of an x-ray free-electron laser may enable the crystal’s unit-cell electron density to be obtained ab initio via well-established iterative phasing algorithms. Such a technique could have a significant impact on the field of biological structure determination since it avoids the need for a priori information from similar known structures, multiple measurements near resonant atomic absorption energies, isomorphic derivative crystals, or atomic-resolution data. Here, we demonstrate this phasing technique on diffraction patterns recorded from artificial two-dimensional microcrystals using the seeded soft x-ray free-electron laser FERMI. We show that the technique is effective when the illuminating wavefront has nonuniform phase and amplitude, and when the diffraction intensities cannot be measured uniformly throughout reciprocal space because of a limited signal-to-noise ratio.

ContributorsKirian, Richard (Author) / Bean, Richard J. (Author) / Beyerlein, Kenneth R. (Author) / Barthelmess, Miriam (Author) / Yoon, Chun Hong (Author) / Wang, Fenglin (Author) / Capotondi, Flavio (Author) / Pedersoli, Emanuele (Author) / Barty, Anton (Author) / Chapman, Henry N. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-02-12
128925-Thumbnail Image.png
Description

Uncovering the chemical and physical links between natural environments and microbial communities is becoming increasingly amenable owing to geochemical observations and metagenomic sequencing. At the hot spring known as Bison Pool in Yellowstone National Park, the cooling of the water in the outflow channel is associated with an increase in

Uncovering the chemical and physical links between natural environments and microbial communities is becoming increasingly amenable owing to geochemical observations and metagenomic sequencing. At the hot spring known as Bison Pool in Yellowstone National Park, the cooling of the water in the outflow channel is associated with an increase in oxidation potential estimated from multiple field-based measurements. Representative groups of proteins whose sequences were derived from metagenomic data also exhibit an increase in average oxidation state of carbon in the protein molecules with distance from the hot-spring source. The energetic requirements of reactions to form selected proteins used in the model were computed using amino-acid group additivity for the standard molal thermodynamic properties of the proteins, and the relative chemical stabilities of the proteins were investigated by varying temperature, pH and oxidation state, expressed as activity of dissolved hydrogen. The relative stabilities of the proteins were found to track the locations of the sampling sites when the calculations included a function for hydrogen activity that increases with temperature and is higher, or more reducing, than values consistent with measurements of dissolved oxygen, sulfide and oxidation-reduction potential in the field. These findings imply that spatial patterns in the amino acid compositions of proteins can be linked, through energetics of overall chemical reactions representing the formation of the proteins, to the environmental conditions at this hot spring, even if microbial cells maintain considerably different internal conditions. Further applications of the thermodynamic calculations are possible for other natural microbial ecosystems.

ContributorsDick, Jeffrey (Author) / Shock, Everett (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011-08-11
128886-Thumbnail Image.png
Description

Species turnover or β diversity is a conceptually attractive surrogate for conservation planning. However, there has been only 1 attempt to determine how well sites selected to maximize β diversity represent species, and that test was done at a scale too coarse (2,500 km2 sites) to inform most conservation decisions.

Species turnover or β diversity is a conceptually attractive surrogate for conservation planning. However, there has been only 1 attempt to determine how well sites selected to maximize β diversity represent species, and that test was done at a scale too coarse (2,500 km2 sites) to inform most conservation decisions. We used 8 plant datasets, 3 bird datasets, and 1 mammal dataset to evaluate whether sites selected to span β diversity will efficiently represent species at finer scale (sites sizes < 1 ha to 625 km2). We used ordinations to characterize dissimilarity in species assemblages (β diversity) among plots (inventory data) or among grid cells (atlas data). We then selected sites to maximize β diversity and used the Species Accumulation Index, SAI, to evaluate how efficiently the surrogate (selecting sites for maximum β diversity) represented species in the same taxon. Across all 12 datasets, sites selected for maximum β diversity represented species with a median efficiency of 24% (i.e., the surrogate was 24% more effective than random selection of sites), and an interquartile range of 4% to 41% efficiency. β diversity was a better surrogate for bird datasets than for plant datasets, and for atlas datasets with 10-km to 14-km grid cells than for atlas datasets with 25-km grid cells. We conclude that β diversity is more than a mere descriptor of how species are distributed on the landscape; in particular β diversity might be useful to maximize the complementarity of a set of sites. Because we tested only within-taxon surrogacy, our results do not prove that β diversity is useful for conservation planning. But our results do justify further investigation to identify the circumstances in which β diversity performs well, and to evaluate it as a cross-taxon surrogate.

Created2016-03-04