Matching Items (158)
153287-Thumbnail Image.png
Description
The ability to identify unoccupied resources in the radio spectrum is a key capability for opportunistic users in a cognitive radio environment. This paper draws upon and extends geometrically based ideas in statistical signal processing to develop estimators for the rank and the occupied subspace in a multi-user environment from

The ability to identify unoccupied resources in the radio spectrum is a key capability for opportunistic users in a cognitive radio environment. This paper draws upon and extends geometrically based ideas in statistical signal processing to develop estimators for the rank and the occupied subspace in a multi-user environment from multiple temporal samples of the signal received at a single antenna. These estimators enable identification of resources, such as the orthogonal complement of the occupied subspace, that may be exploitable by an opportunistic user. This concept is supported by simulations showing the estimation of the number of users in a simple CDMA system using a maximum a posteriori (MAP) estimate for the rank. It was found that with suitable parameters, such as high SNR, sufficient number of time epochs and codes of appropriate length, the number of users could be correctly estimated using the MAP estimator even when the noise variance is unknown. Additionally, the process of identifying the maximum likelihood estimate of the orthogonal projector onto the unoccupied subspace is discussed.
ContributorsBeaudet, Kaitlyn (Author) / Cochran, Douglas (Thesis advisor) / Turaga, Pavan (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2014
156811-Thumbnail Image.png
Description
A human communications research project at Arizona State University aurally

recorded the daily interactions of aware and consenting employees and their visiting

clients at the Software Factory, a software engineering consulting team, over a three

year period. The resulting dataset contains valuable insights on the communication

networks that the participants formed however it is

A human communications research project at Arizona State University aurally

recorded the daily interactions of aware and consenting employees and their visiting

clients at the Software Factory, a software engineering consulting team, over a three

year period. The resulting dataset contains valuable insights on the communication

networks that the participants formed however it is far too vast to be processed manually

by researchers. In this work, digital signal processing techniques are employed

to develop a software toolkit that can aid in estimating the observable networks contained

in the Software Factory recordings. A four-step process is employed that starts

with parsing available metadata to initially align the recordings followed by alignment

estimation and correction. Once aligned, the recordings are processed for common

signals that are detected across multiple participants’ recordings which serve as a

proxy for conversations. Lastly, visualization tools are developed to graphically encode

the estimated similarity measures to efficiently convey the observable network

relationships to assist in future human communications research.
ContributorsPressler, Daniel (Author) / Bliss, Daniel W (Thesis advisor) / Berisha, Visar (Committee member) / Corman, Steven (Committee member) / Arizona State University (Publisher)
Created2018
156814-Thumbnail Image.png
Description
Much evidence has shown that first language (L1) plays an important role in the formation of L2 phonological system during second language (L2) learning process. This combines with the fact that different L1s have distinct phonological patterns to indicate the diverse L2 speech learning outcomes for speakers from different L1

Much evidence has shown that first language (L1) plays an important role in the formation of L2 phonological system during second language (L2) learning process. This combines with the fact that different L1s have distinct phonological patterns to indicate the diverse L2 speech learning outcomes for speakers from different L1 backgrounds. This dissertation hypothesizes that phonological distances between accented speech and speakers' L1 speech are also correlated with perceived accentedness, and the correlations are negative for some phonological properties. Moreover, contrastive phonological distinctions between L1s and L2 will manifest themselves in the accented speech produced by speaker from these L1s. To test the hypotheses, this study comes up with a computational model to analyze the accented speech properties in both segmental (short-term speech measurements on short-segment or phoneme level) and suprasegmental (long-term speech measurements on word, long-segment, or sentence level) feature space. The benefit of using a computational model is that it enables quantitative analysis of L1's effect on accent in terms of different phonological properties. The core parts of this computational model are feature extraction schemes to extract pronunciation and prosody representation of accented speech based on existing techniques in speech processing field. Correlation analysis on both segmental and suprasegmental feature space is conducted to look into the relationship between acoustic measurements related to L1s and perceived accentedness across several L1s. Multiple regression analysis is employed to investigate how the L1's effect impacts the perception of foreign accent, and how accented speech produced by speakers from different L1s behaves distinctly on segmental and suprasegmental feature spaces. Results unveil the potential application of the methodology in this study to provide quantitative analysis of accented speech, and extend current studies in L2 speech learning theory to large scale. Practically, this study further shows that the computational model proposed in this study can benefit automatic accentedness evaluation system by adding features related to speakers' L1s.
ContributorsTu, Ming (Author) / Berisha, Visar (Thesis advisor) / Liss, Julie M (Committee member) / Zhou, Yi (Committee member) / Arizona State University (Publisher)
Created2018
156919-Thumbnail Image.png
Description
Motion estimation is a core task in computer vision and many applications utilize optical flow methods as fundamental tools to analyze motion in images and videos. Optical flow is the apparent motion of objects in image sequences that results from relative motion between the objects and the imaging perspective. Today,

Motion estimation is a core task in computer vision and many applications utilize optical flow methods as fundamental tools to analyze motion in images and videos. Optical flow is the apparent motion of objects in image sequences that results from relative motion between the objects and the imaging perspective. Today, optical flow fields are utilized to solve problems in various areas such as object detection and tracking, interpolation, visual odometry, etc. In this dissertation, three problems from different areas of computer vision and the solutions that make use of modified optical flow methods are explained.

The contributions of this dissertation are approaches and frameworks that introduce i) a new optical flow-based interpolation method to achieve minimally divergent velocimetry data, ii) a framework that improves the accuracy of change detection algorithms in synthetic aperture radar (SAR) images, and iii) a set of new methods to integrate Proton Magnetic Resonance Spectroscopy (1HMRSI) data into threedimensional (3D) neuronavigation systems for tumor biopsies.

In the first application an optical flow-based approach for the interpolation of minimally divergent velocimetry data is proposed. The velocimetry data of incompressible fluids contain signals that describe the flow velocity. The approach uses the additional flow velocity information to guide the interpolation process towards reduced divergence in the interpolated data.

In the second application a framework that mainly consists of optical flow methods and other image processing and computer vision techniques to improve object extraction from synthetic aperture radar images is proposed. The proposed framework is used for distinguishing between actual motion and detected motion due to misregistration in SAR image sets and it can lead to more accurate and meaningful change detection and improve object extraction from a SAR datasets.

In the third application a set of new methods that aim to improve upon the current state-of-the-art in neuronavigation through the use of detailed three-dimensional (3D) 1H-MRSI data are proposed. The result is a progressive form of online MRSI-guided neuronavigation that is demonstrated through phantom validation and clinical application.
ContributorsKanberoglu, Berkay (Author) / Frakes, David (Thesis advisor) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2018
Description
Alzheimer’s disease (AD), is a chronic neurodegenerative disease that usually starts slowly and gets worse over time. It is the cause of 60% to 70% of cases of dementia. There is growing interest in identifying brain image biomarkers that help evaluate AD risk pre-symptomatically. High-dimensional non-linear pattern classification methods have

Alzheimer’s disease (AD), is a chronic neurodegenerative disease that usually starts slowly and gets worse over time. It is the cause of 60% to 70% of cases of dementia. There is growing interest in identifying brain image biomarkers that help evaluate AD risk pre-symptomatically. High-dimensional non-linear pattern classification methods have been applied to structural magnetic resonance images (MRI’s) and used to discriminate between clinical groups in Alzheimers progression. Using Fluorodeoxyglucose (FDG) positron emission tomography (PET) as the pre- ferred imaging modality, this thesis develops two independent machine learning based patch analysis methods and uses them to perform six binary classification experiments across different (AD) diagnostic categories. Specifically, features were extracted and learned using dimensionality reduction and dictionary learning & sparse coding by taking overlapping patches in and around the cerebral cortex and using them as fea- tures. Using AdaBoost as the preferred choice of classifier both methods try to utilize 18F-FDG PET as a biological marker in the early diagnosis of Alzheimer’s . Addi- tional we investigate the involvement of rich demographic features (ApoeE3, ApoeE4 and Functional Activities Questionnaires (FAQ)) in classification. The experimental results on Alzheimer’s Disease Neuroimaging initiative (ADNI) dataset demonstrate the effectiveness of both the proposed systems. The use of 18F-FDG PET may offer a new sensitive biomarker and enrich the brain imaging analysis toolset for studying the diagnosis and prognosis of AD.
ContributorsSrivastava, Anant (Author) / Wang, Yalin (Thesis advisor) / Bansal, Ajay (Thesis advisor) / Liang, Jianming (Committee member) / Arizona State University (Publisher)
Created2017
154587-Thumbnail Image.png
Description
Information divergence functions, such as the Kullback-Leibler divergence or the Hellinger distance, play a critical role in statistical signal processing and information theory; however estimating them can be challenge. Most often, parametric assumptions are made about the two distributions to estimate the divergence of interest. In cases where no parametric

Information divergence functions, such as the Kullback-Leibler divergence or the Hellinger distance, play a critical role in statistical signal processing and information theory; however estimating them can be challenge. Most often, parametric assumptions are made about the two distributions to estimate the divergence of interest. In cases where no parametric model fits the data, non-parametric density estimation is used. In statistical signal processing applications, Gaussianity is usually assumed since closed-form expressions for common divergence measures have been derived for this family of distributions. Parametric assumptions are preferred when it is known that the data follows the model, however this is rarely the case in real-word scenarios. Non-parametric density estimators are characterized by a very large number of parameters that have to be tuned with costly cross-validation. In this dissertation we focus on a specific family of non-parametric estimators, called direct estimators, that bypass density estimation completely and directly estimate the quantity of interest from the data. We introduce a new divergence measure, the $D_p$-divergence, that can be estimated directly from samples without parametric assumptions on the distribution. We show that the $D_p$-divergence bounds the binary, cross-domain, and multi-class Bayes error rates and, in certain cases, provides provably tighter bounds than the Hellinger divergence. In addition, we also propose a new methodology that allows the experimenter to construct direct estimators for existing divergence measures or to construct new divergence measures with custom properties that are tailored to the application. To examine the practical efficacy of these new methods, we evaluate them in a statistical learning framework on a series of real-world data science problems involving speech-based monitoring of neuro-motor disorders.
ContributorsWisler, Alan (Author) / Berisha, Visar (Thesis advisor) / Spanias, Andreas (Thesis advisor) / Liss, Julie (Committee member) / Bliss, Daniel (Committee member) / Arizona State University (Publisher)
Created2017
135499-Thumbnail Image.png
Description
Many mysteries still surround brain function, and yet greater understanding of it is vital to advancing scientific research. Studies on the brain in particular play a huge role in the medical field as analysis can lead to proper diagnosis of patients and to anticipatory treatments. The objective of this research

Many mysteries still surround brain function, and yet greater understanding of it is vital to advancing scientific research. Studies on the brain in particular play a huge role in the medical field as analysis can lead to proper diagnosis of patients and to anticipatory treatments. The objective of this research was to apply signal processing techniques on electroencephalogram (EEG) data in order to extract features for which to quantify an activity performed or a response to stimuli. The responses by the brain were shown in eigenspectrum plots in combination with time-frequency plots for each of the sensors to provide both spatial and temporal frequency analysis. Through this method, it was revealed how the brain responds to various stimuli not typically used in current research. Future applications might include testing similar stimuli on patients with neurological diseases to gain further insight into their condition.
ContributorsJackson, Matthew Joseph (Author) / Bliss, Daniel (Thesis director) / Berisha, Visar (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133158-Thumbnail Image.png
Description
The purpose of this project was to investigate the hypothesis that adults with dyslexia tend to have lower accuracies in and take longer to process tasks involving the serial order of letters, compared to age and gender-matched controls. In Experiment 1, participants evaluated word pairs for differences. Half of the

The purpose of this project was to investigate the hypothesis that adults with dyslexia tend to have lower accuracies in and take longer to process tasks involving the serial order of letters, compared to age and gender-matched controls. In Experiment 1, participants evaluated word pairs for differences. Half of the word pairs that they evaluated were the same, whereas the remaining word pairs differed along specific parameters such as sequential rearrangements ("left" vs "felt"), left/right reversals ("cob" vs "cod"), up/down reversals ("best" vs "pest"), homophones ("grown" vs "groan"), visual letter similarities ("tight" vs "fight"), and generic substitutions ("moan" vs "loan"). The response times and accuracies of both groups were recorded. In Experiment 2, the participants spelled single words to dictation using the spelling subtest from the Wechsler Individual Achievement Test\u2014II. Spelling errors were evaluated for errors such as sequential rearrangements, left/right reversals, homophones, substitutions, orthographic violations, omissions, and insertions. An example of a spelling error is the word "excitement" misspelled as "excietment", which involves a sequential rearrangement error. Another example is the word "apparently" misspelled as "aparently,", which involves an error of omission. Error frequencies within these error types for both groups were recorded. Experiment 3 evaluated whether left/right reversal errors during the letter-naming Rapid Automatized Naming and Rapid Alternating Stimulus (RAN/RAS) task were associated with left/right errors during word pair comparison and spelling and whether these visual reversal errors were also associated with errors of serial order. The group with dyslexia was split into two groups: group 1 included participants who did not make any left/right reversals during the RAN/RAS task and group 2 included participants who did make left/right reversals during the RAN/RAS task. The accuracies and reaction times of these three groups during the comparison and spelling assessments were recorded. The results of experiment 1 revealed that that adults with dyslexia had a significantly higher reaction time and lower accuracy during the sequential rearrangement and left/right reversal conditions. Experiment 2 demonstrated that the group with dyslexia made significantly more spelling errors during the homophone and omission conditions. The results of Experiment 3 showed associations between the sequential rearrangement and left/right conditions in both the word pair comparison and spelling task for participants with dyslexia who made left/right reversals during the RAN/RAS task. Overall, the participants with dyslexia who made left/right reversals during the RAN/RAS task seemed to have greater difficulty understanding the orientation of letters that occur on a horizontal plane, since this underlying pattern of errors was also seen throughout the spelling and word comparison tasks. These results show that left/right reversals and errors of serial order are evident in some, but not all adults with dyslexia. These errors may also characterize a distinct subtype of dyslexia. Further, errors of left/right reversal and serial order appear to be associated, so left/right reversals may represent a special form of serial order error that involves a change in the order of visual processing in the horizontal but not vertical axis of letter orientation.
ContributorsAlbert, Andria (Author) / Peter, Beate (Thesis director) / Gray, Shelley (Committee member) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12