Matching Items (32)

134185-Thumbnail Image.png

A Novel Historical Safety Metric for Evaluating Road Networks

Description

37,461 automobile accident fatalities occured in the United States in 2016 ("Quick Facts 2016", 2017). Improving the safety of roads has traditionally been approached by governmental agencies including the National

37,461 automobile accident fatalities occured in the United States in 2016 ("Quick Facts 2016", 2017). Improving the safety of roads has traditionally been approached by governmental agencies including the National Highway Traffic Safety Administration and State Departments of Transporation. In past literature, automobile crash data is analyzed using time-series prediction technicques to identify road segments and/or intersections likely to experience future crashes (Lord & Mannering, 2010). After dangerous zones have been identified road modifications can be implemented improving public safety. This project introduces a historical safety metric for evaluating the relative danger of roads in a road network. The historical safety metric can be used to update routing choices of individual drivers improving public safety by avoiding historically more dangerous routes. The metric is constructed using crash frequency, severity, location and traffic information. An analysis of publically-available crash and traffic data in Allgeheny County, Pennsylvania is used to generate the historical safety metric for a specific road network. Methods for evaluating routes based on the presented historical safety metric are included using the Mann Whitney U Test to evaluate the significance of routing decisions. The evaluation method presented requires routes have at least 20 crashes to be compared with significance testing. The safety of the road network is visualized using a heatmap to present distribution of the metric throughout Allgeheny County.

Contributors

Agent

Created

Date Created
  • 2017-12

133880-Thumbnail Image.png

ReL GoalD (Reinforcement Learning for Goal Dependencies)

Description

In this project, the use of deep neural networks for the process of selecting actions to execute within an environment to achieve a goal is explored. Scenarios like this are

In this project, the use of deep neural networks for the process of selecting actions to execute within an environment to achieve a goal is explored. Scenarios like this are common in crafting based games such as Terraria or Minecraft. Goals in these environments have recursive sub-goal dependencies which form a dependency tree. An agent operating within these environments have access to low amounts of data about the environment before interacting with it, so it is crucial that this agent is able to effectively utilize a tree of dependencies and its environmental surroundings to make judgements about which sub-goals are most efficient to pursue at any point in time. A successful agent aims to minimizes cost when completing a given goal. A deep neural network in combination with Q-learning techniques was employed to act as the agent in this environment. This agent consistently performed better than agents using alternate models (models that used dependency tree heuristics or human-like approaches to make sub-goal oriented choices), with an average performance advantage of 33.86% (with a standard deviation of 14.69%) over the best alternate agent. This shows that machine learning techniques can be consistently employed to make goal-oriented choices within an environment with recursive sub-goal dependencies and low amounts of pre-known information.

Contributors

Agent

Created

Date Created
  • 2018-05

135458-Thumbnail Image.png

Maroon and Gold: Mobile Application

Description

Currently, students at Arizona State University are restricted to cards when using their college's local currency. This currency, Maroon and Gold dollars (M&G), is a primary source of meal plans

Currently, students at Arizona State University are restricted to cards when using their college's local currency. This currency, Maroon and Gold dollars (M&G), is a primary source of meal plans for many students. When relying on card readers, students risk security and convenience. The security is risked due to the constant student id number on each card. A student's identification number never changes and is located on each card. If the student loses their card, their account information is permanently compromised. Convenience is an issue because, currently, students must make a purchase in order to see their current account balance. Another major issue is that businesses must purchase external hardware in order to use the M&G System. An online or mobile system would eliminate the need for a physical card and allow businesses to function without external card readers. Such a system would have access to financial information of businesses and students at ASU. Thus, the system require severe scrutiny by a well-trusted team of professionals before being implemented. My objective was to help bring such a system to life. To do this, I decided to make a mobile application prototype to serve as a baseline and to demonstrate the features of such a system. As a baseline, it needed to have a realistic, professional appearance, with the ability to accurately demonstrate feature functionality. Before developing the app, I set out to determine the User Interactions and User Experience designs (UI/UX) by conducting a series of informal interviews with local students and businesses. After the designs were finalized, I started implementation of the actual application in Android Studio. This creative project consists of a mobile application, a contained database, a GUI (Graphics User Interface) prototype, and a technical document.

Contributors

Agent

Created

Date Created
  • 2016-05

136283-Thumbnail Image.png

Investigation in Prolog-based Machine Translation with English-Hungarian Case Study

Description

This undergraduate thesis explores the efficacy of developing a translator generator in the Prolog programming language using Lexical Functional Grammars. A bidirectional machine translator between English and Hungarian, developed as

This undergraduate thesis explores the efficacy of developing a translator generator in the Prolog programming language using Lexical Functional Grammars. A bidirectional machine translator between English and Hungarian, developed as a proof-of-concept case study, is discussed and assessed. The benefits and drawbacks of this approach as generalized to Machine Translation systems are also discussed, along with possible areas of future work.

Contributors

Agent

Created

Date Created
  • 2015-05

132708-Thumbnail Image.png

PRACTICAL APPLICATION OF CONVOLUTIONAL NEURAL NETWORKS FOR SKIN LESION CLASSIFICATION

Description

In this paper, I explore practical applications of neural networks for automated skin lesion identification. The visual characteristics are of primary importance in the recognition of skin diseases, hence, the

In this paper, I explore practical applications of neural networks for automated skin lesion identification. The visual characteristics are of primary importance in the recognition of skin diseases, hence, the development of deep neural network models proven capable of classifying skin lesions can potentially change the face of modern medicine by extending the availability and lowering the cost of diagnostic care. Previous work has demonstrated the effectiveness of convolutional neural networks in image classification in general, with even higher accuracy achievable by data augmentation techniques, such as cropping, rotating, and flipping input images, along with more advanced computationally intensive approaches. In this research, I provide an overview of Convolutional Neural Networks (CNN) and CNN implementation with TensorFlow and Keras API in context of image recognition and classification. I also experiment with custom convolutional neural network model architecture trained using HAM10000 dataset. The dataset used for the case study is obtained from Harvard Dataverse and is maintained by Medical University of Vienna. The HAM10000 dataset is a large collection of multi-source dermatoscopic images of common pigmented skin lesions and is available for academic research under Creative Commons Attribution-Noncommercial 4.0 International Public License. With over ten thousand dermatoscopic images of seven classes of benign and malignant skin lesions, the dataset is substantial for academic machine learning purposes for multiclass image classification. I discuss the successes and shortcomings of the model in respect to its application to the dataset.

Contributors

Agent

Created

Date Created
  • 2019-05

152796-Thumbnail Image.png

Dependency analysis in the HTML5, JavaScript and CSS3 Stack

Description

The Internet is transforming its look, in a short span of time we have come very far from black and white web forms with plain buttons to responsive, colorful and

The Internet is transforming its look, in a short span of time we have come very far from black and white web forms with plain buttons to responsive, colorful and appealing user interface elements. With the sudden rise in demand of web applications, developers are making full use of the power of HTML5, JavaScript and CSS3 to cater to their users on various platforms. There was never a need of classifying the ways in which these languages can be interconnected to each other as the size of the front end code base was relatively small and did not involve critical business logic. This thesis focuses on listing and defining all dependencies between HTML5, JavaScript and CSS3 that will help developers better understand the interconnections within these languages. We also explore the present techniques available to a developer to make his code free of dependency related defects. We build a prototype tool, HJCDepend, based on our model, which aims at helping developers discover and remove defects early in the development cycle.

Contributors

Agent

Created

Date Created
  • 2014

154372-Thumbnail Image.png

An adaptable iOS mobile application for mobile data collection

Description

Mobile data collection (MDC) applications have been growing in the last decade

especially in the field of education and research. Although many MDC applications are

available, almost all of them are tailor-made

Mobile data collection (MDC) applications have been growing in the last decade

especially in the field of education and research. Although many MDC applications are

available, almost all of them are tailor-made for a very specific task in a very specific

field (i.e. health, traffic, weather forecasts, …etc.). Since the main users of these apps are

researchers, physicians or generally data collectors, it can be extremely challenging for

them to make adjustments or modifications to these applications given that they have

limited or no technical background in coding. Another common issue with MDC

applications is that its functionalities are limited only to data collection and storing. Other

functionalities such as data visualizations, data sharing, data synchronization and/or data updating are rarely found in MDC apps.

This thesis tries to solve the problems mentioned above by adding the following

two enhancements: (a) the ability for data collectors to customize their own applications

based on the project they’re working on, (b) and introducing new tools that would help

manage the collected data. This will be achieved by creating a Java standalone

application where data collectors can use to design their own mobile apps in a userfriendly Graphical User Interface (GUI). Once the app has been completely designed

using the Java tool, a new iOS mobile application would be automatically generated

based on the user’s input. By using this tool, researchers now are able to create mobile

applications that are completely tailored to their needs, in addition to enjoying new

features such as visualize and analyze data, synchronize data to the remote database,

share data with other data collectors and update existing data.

Contributors

Agent

Created

Date Created
  • 2016

156331-Thumbnail Image.png

Graph Search as a Feature in Imperative/Procedural Programming Languages

Description

Graph theory is a critical component of computer science and software engineering, with algorithms concerning graph traversal and comprehension powering much of the largest problems in both industry and research.

Graph theory is a critical component of computer science and software engineering, with algorithms concerning graph traversal and comprehension powering much of the largest problems in both industry and research. Engineers and researchers often have an accurate view of their target graph, however they struggle to implement a correct, and efficient, search over that graph.

To facilitate rapid, correct, efficient, and intuitive development of graph based solutions we propose a new programming language construct - the search statement. Given a supra-root node, a procedure which determines the children of a given parent node, and optional definitions of the fail-fast acceptance or rejection of a solution, the search statement can conduct a search over any graph or network. Structurally, this statement is modelled after the common switch statement and is put into a largely imperative/procedural context to allow for immediate and intuitive development by most programmers. The Go programming language has been used as a foundation and proof-of-concept of the search statement. A Go compiler is provided which implements this construct.

Contributors

Agent

Created

Date Created
  • 2018

158310-Thumbnail Image.png

Generating Vocabulary Sets for Implicit Language Learning using Masked Language Modeling

Description

Globalization is driving a rapid increase in motivation for learning new languages, with online and mobile language learning applications being an extremely popular method of doing so. Many language learning

Globalization is driving a rapid increase in motivation for learning new languages, with online and mobile language learning applications being an extremely popular method of doing so. Many language learning applications focus almost exclusively on aiding students in acquiring vocabulary, one of the most important elements in achieving fluency in a language. A well-balanced language curriculum must include both explicit vocabulary instruction and implicit vocabulary learning through interaction with authentic language materials. However, most language learning applications focus only on explicit instruction, providing little support for implicit learning. Students require support with implicit vocabulary learning because they need enough context to guess and acquire new words. Traditional techniques aim to teach students enough vocabulary to comprehend the text, thus enabling them to acquire new words. Despite the wide variety of support for vocabulary learning offered by learning applications today, few offer guidance on how to select an optimal vocabulary study set.

This thesis proposes a novel method of student modeling which uses pre-trained masked language models to model a student's reading comprehension abilities and detect words which are required for comprehension of a text. It explores the efficacy of using pre-trained masked language models to model human reading comprehension and presents a vocabulary study set generation pipeline using this method. This pipeline creates vocabulary study sets for explicit language learning that enable comprehension while still leaving some words to be acquired implicitly. Promising results show that masked language modeling can be used to model human comprehension and that the pipeline produces reasonably sized vocabulary study sets.

Contributors

Agent

Created

Date Created
  • 2020

158297-Thumbnail Image.png

Domain-Agnostic Context-Aware Assistant Framework for Task-Based Environment

Description

Smart home assistants are becoming a norm due to their ease-of-use. They employ spoken language as an interface, facilitating easy interaction with their users. Even with their obvious advantages, natural-language

Smart home assistants are becoming a norm due to their ease-of-use. They employ spoken language as an interface, facilitating easy interaction with their users. Even with their obvious advantages, natural-language based interfaces are not prevalent outside the domain of home assistants. It is hard to adopt them for computer-controlled systems due to the numerous complexities involved with their implementation in varying fields. The main challenge is the grounding of natural language base terms into the underlying system's primitives. The existing systems that do use natural language interfaces are specific to one problem domain only.

In this thesis, a domain-agnostic framework that creates natural language interfaces for computer-controlled systems has been developed by making the mapping between the language constructs and the system primitives customizable. The framework employs ontologies built using OWL (Web Ontology Language) for knowledge representation purposes and machine learning models for language processing tasks. It has been evaluated within a simulation environment consisting of objects and a robot. This environment has been deployed as a web application, providing anonymous user testing for evaluation, and generating training data for machine learning components. Performance evaluation has been done on metrics such as time taken for a task or the number of instructions given by the user to the robot to accomplish a task. Additionally, the framework has been used to create a natural language interface for a database system to demonstrate its domain independence.

Contributors

Agent

Created

Date Created
  • 2020