Matching Items (79)
Filtering by

Clear all filters

158547-Thumbnail Image.png
Description
Vibrational spectroscopy is a ubiquitous characterization tool in elucidating atomic structure at the bulk and nanoscale. The ability to perform high spatial resolution vibrational spectroscopy in a scanning transmission electron microscope (STEM) with electron energy-loss spectroscopy (EELS) has the potential to affect a variety of materials science problems. Since 2014,

Vibrational spectroscopy is a ubiquitous characterization tool in elucidating atomic structure at the bulk and nanoscale. The ability to perform high spatial resolution vibrational spectroscopy in a scanning transmission electron microscope (STEM) with electron energy-loss spectroscopy (EELS) has the potential to affect a variety of materials science problems. Since 2014, instrumentation development has pushed for incremental improvements in energy resolution, with the current best being 4.2 meV. Although this is poor in comparison to what is common in photon or neutron vibrational spectroscopies, the spatial resolution offered by vibrational EELS is equal to or better than the best of these other techniques.

The major objective of this research program is to investigate the spatial resolution of the monochromated energy-loss signal in the transmission-beam mode and correlate it to the excitation mechanism of the associated vibrational mode. The spatial variation of dipole vibrational signals in SiO2 is investigated as the electron probe is scanned across an atomically abrupt SiO2/Si interface. The Si-O bond stretch signal has a spatial resolution of 2 – 20 nm, depending on whether the interface, bulk, or surface contribution is chosen. For typical TEM specimen thicknesses, coupled surface modes contribute strongly to the spectrum. These coupled surface modes are phonon polaritons, whose intensity and spectral positions are strongly specimen geometry dependent. In a SiO2 thin-film patterned with a 2x2 array, dielectric theory simulations predict the simultaneous excitation of parallel and uncoupled surface polaritons and a very weak excitation of the orthogonal polariton.

It is demonstrated that atomic resolution can be achieved with impact vibrational signals from optical and acoustic phonons in a covalently bonded material like Si. Sub-nanometer resolution mapping of the Si-O symmetric bond stretch impact signal can also be performed in an ionic material like SiO2. The visibility of impact energy-loss signals from excitation of Brillouin zone boundary vibrational modes in hexagonal BN is seen to be a strong function of probe convergence, but not as strong a function of spectrometer collection angles. Some preliminary measurements to detect adsorbates on catalyst nanoparticle surfaces with minimum radiation damage in the aloof-beam mode are also presented.
ContributorsVenkatraman, Kartik (Author) / Crozier, Peter (Thesis advisor) / Rez, Peter (Committee member) / Wang, Robert (Committee member) / Tongay, Sefaattin (Committee member) / Arizona State University (Publisher)
Created2020
158253-Thumbnail Image.png
Description
Two dimensional (2D) Janus Transition Metal Dichalcogenides (TMDs) are a new class of atomically thin polar materials. In these materials, the top and the bottom atomic layer are made of different chalcogen atoms. To date, several theoretical studies have shown that a broken mirror symmetry induces a colossal electrical field

Two dimensional (2D) Janus Transition Metal Dichalcogenides (TMDs) are a new class of atomically thin polar materials. In these materials, the top and the bottom atomic layer are made of different chalcogen atoms. To date, several theoretical studies have shown that a broken mirror symmetry induces a colossal electrical field in these materials, which leads to unusual quantum properties. Despite these new properties, the current knowledge in their synthesis is limited only through two independent studies; both works rely on high-temperature processing techniques and are specific to only one type of 2D Janus material - MoSSe. Therefore, there is an urgent need for the development of a new synthesis method to (1) Extend the library of Janus class materials. (2) Improve the quality of 2D crystals. (3) Enable the synthesis of Janus heterostructures. The central hypothesis in this work is that the processing temperature of 2D Janus synthesis can be significantly lowered down to room temperatures by using reactive hydrogen and sulfur radicals while stripping off selenium atoms from the 2D surface. To test this hypothesis, a series of controlled growth studies were performed, and several complementary characterization techniques were used to establish a process–structure-property relationship. The results show that the newly proposed approach, namely Selective Epitaxy and Atomic Replacement (SEAR), is effective in reducing the growth temperature down to ambient conditions. The proposed technique benefits in achieving highly crystalline 2D Janus layers with an excellent optical response. Further studies herein show that this technique can form highly sophisticated lateral and vertical heterostructures of 2D Janus layers. Overall results establish an entirely new growth technique for 2D Janus.layers, which pave ways for the realization of exciting quantum effects in these materials such as Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state, Majorana fermions, and topological p-wave superconductors.
ContributorsSayyad, Mohammed Yasir (Author) / Tongay, Sefaattin (Thesis advisor) / Crozier, Peter (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2020
161641-Thumbnail Image.png
Description
Realization of efficient, high-bandgap photovoltaic cells produced using economically viable methods is a technological advance that could change the way we generate and use energy, and thereby accelerate the development of human civilization. There is a need to engineer a semiconductor material for solar cells, particularly multijunction cells, that has

Realization of efficient, high-bandgap photovoltaic cells produced using economically viable methods is a technological advance that could change the way we generate and use energy, and thereby accelerate the development of human civilization. There is a need to engineer a semiconductor material for solar cells, particularly multijunction cells, that has high (1.6-2.0 eV) bandgap, has relatively inactive defects, is thermodynamically stable under normal operating conditions with the potential for cost-effective thin-film growth in mass production.This work focuses on a material system made of gallium, indium, and phosphorus – the ternary semiconductor GaInP. GaInP based photovoltaic cells in single-crystal form have demonstrated excellent power conversion efficiency, however, growth of single-crystal GaInP is prohibitively expensive. While growth of polycrystalline GaInP is expected to lower production costs, polycrystalline GaInP is also expected to have a high density of electronically active defects, about which little is reported in scientific literature. This work presents the first study of synthesis, and structural and optoelectronic characterization of polycrystalline GaInP thin films. In addition, this work models the best performance of polycrystalline solar cells achievable with a given grain size with grain-boundary/surface recombination velocity as a variable parameter. The effects of defect characteristics at the surface and layer properties such as doping and thickness on interface recombination velocity are also modeled. Recombination velocities at the free surface of single-crystal GaInP and after deposition of various dielectric layers on GaInP are determined experimentally using time-resolved photoluminescence decay measurements. In addition, experimental values of bulk lifetime and surface recombination velocity in well-passivated single crystal AlInP-GaInP based double heterostructures are also measured for comparison to polycrystalline material systems. A novel passivation method – aluminum-assisted post-deposition treatment or Al-PDT – was developed which shows promise as a general passivation and material improvement technique for polycrystalline thin films. In the GaInP system, this aluminum post-deposition treatment has demonstrated improvement in the minority carrier lifetime to 44 ns at 80 K. During development of the passivation process, aluminum diffusivity in GaInP was measured using TEM-EDS line scans. Introduction, development, and refinement of this novel passivation mechanism in polycrystalline GaInP could initiate the development of a new family of passivation treatments, potentially improving the optoelectronic response of other polycrystalline compound semiconductors as well.
ContributorsChikhalkar, Abhinav (Author) / King, Richard R (Thesis advisor) / Honsberg, Christiana (Committee member) / Newman, Nathan (Committee member) / Tongay, Sefaattin (Committee member) / Arizona State University (Publisher)
Created2021
161665-Thumbnail Image.png
Description
Urban areas across the Unites States are facing a housing affordability crisis. One approach some cities and states have taken is to reduce or eliminate single-family zoning. Single-family zoning prevents the construction of more-affordable apartments in vast swaths of the American urban landscape. This policy shift has already occurred in

Urban areas across the Unites States are facing a housing affordability crisis. One approach some cities and states have taken is to reduce or eliminate single-family zoning. Single-family zoning prevents the construction of more-affordable apartments in vast swaths of the American urban landscape. This policy shift has already occurred in Minneapolis, Sacramento, and Oregon, and is under discussion in California, Massachusetts, and North Carolina, among others. Independent of any effects on housing affordability, changes to land use will have effects on transport. I evaluate these effects using a microsimulation framework. In order for land use policies to have an effect on transport, they need to first have an effect on land use, so I first build an economic model to simulate where development will occur given a loosening of single-family zoning. Transport outcomes will vary depending on which households live in which parts of the region, so I use an equilibrium sorting model to forecast how residents will re-sort across the region in response to the land use changes induced by new land-use policies. This model also jointly forecasts how many vehicles each household will choose to own. Finally, I apply an activity-based travel demand microsimulation model to forecast the changes in transport associated with the forecast changes from the previous models. I find that while there is opportunity for economically-feasible redevelopment of single-family homes into multifamily structures, the amount of redevelopment that will occur varies greatly depending on the exact expectations of developers about future market conditions. Redevelopment is focused in higher-income neighborhoods. The transport effects of the redevelopment are minimal. Average car ownership across the region does not change hardly at all, although residents of new housing units do have somewhat lower car ownership. Vehicles kilometers traveled, mode choice, and congestion change very little as well. This does not mean that upzoning does not affect transport in general, but that more nuanced proposals may be necessary to promote desirable transport outcomes. Alternatively, the results suggest that upzoning will not worsen transport outcomes, promising for those who support upzoning on affordability grounds.
ContributorsConway, Matthew Wigginton (Author) / Salon, Deborah (Thesis advisor) / Pfeiffer, Deirdre (Committee member) / Fotheringham, A Stewart (Committee member) / van Eggermond, Michael AB (Committee member) / Arizona State University (Publisher)
Created2021
161840-Thumbnail Image.png
Description
Soft thermal interface materials (TIMs) are critical for improving the thermal management of advanced microelectronic devices. Despite containing high thermal conductivity filler materials, TIM performance is limited by thermal resistances between fillers, filler-matrix, and external contact resistance. Recently, room-temperature liquid metals (LMs) started to be adapted as an alternative TIM

Soft thermal interface materials (TIMs) are critical for improving the thermal management of advanced microelectronic devices. Despite containing high thermal conductivity filler materials, TIM performance is limited by thermal resistances between fillers, filler-matrix, and external contact resistance. Recently, room-temperature liquid metals (LMs) started to be adapted as an alternative TIM for their low thermal resistance and fluidic nature. However, LM-based TIMs face challenges due to their low viscosity, non-wetting qualities, chemical reactivity, and corrosiveness towards aluminum.To address these concerns, this dissertation research investigates fundamental LM properties and assesses their utility for developing multiphase LM composites with strong thermal properties. Augmentation of LM with gallium oxide and air capsules lead to LM-base foams with improved spreading and patterning. Gallium oxides are responsible for stabilizing LM foam structures which is observed through electron microscopy, revealing a temporal evolution of air voids after shear mixing in air. The presence of air bubbles and oxide fragments in LM decreases thermal conductivity while increasing its viscosity as the shear mixing time is prolonged. An overall mechanism for foam generation in LM is presented in two stages: 1) oxide fragment accumulation and 2) air bubble entrapment and propagation. To avoid the low thermal conductivity air content, mixing of non-reactive particles of tungsten or silicon carbide (SiC) into LM forms paste-like LM-based mixtures that exhibit tunable high thermal conductivity 2-3 times beyond the matrix material. These filler materials remain chemically stable and do not react with LM over time while suspended. Gallium oxide-mediated wetting mechanisms for these non-wetting fillers are elucidated in oxygen rich and deficient environments. Three-phase composites consisting of LM and Ag-coated SiC fillers dispersed in a noncuring silicone oil matrix address LM-corrosion related issues. Ag-coated SiC particles enable improved wetting of the LM, and the results show that applied pressure is necessary for bridging of these LM-coated particles to improve filler thermal resistance. Compositional tuning between the fillers leads to thermal improvements in this multiphase composite. The results of this dissertation work aim to advance our current understanding of LMs and how to design LM-based composite materials for improved TIMs and other soft thermal applications.
ContributorsKong, Wilson (Author) / Wang, Robert Y (Thesis advisor) / Rykaczewski, Konrad (Thesis advisor) / Green, Matthew D (Committee member) / Tongay, Sefaattin (Committee member) / Arizona State University (Publisher)
Created2021
161698-Thumbnail Image.png
Description
2D materials with reduced symmetry have gained great interest in the past decade due to the arising quantum properties introduced by the structural asymmetry. A particular example is called 2D Janus materials. Named after Roman god Janus with two faces, Janus materials have different chemical compositions on the two sides

2D materials with reduced symmetry have gained great interest in the past decade due to the arising quantum properties introduced by the structural asymmetry. A particular example is called 2D Janus materials. Named after Roman god Janus with two faces, Janus materials have different chemical compositions on the two sides of materials, leading to a structure with broken mirror symmetry. Electronegativity difference of the facial elements induces a built-in polarization field pointing out of the plane, which has driven a lot of theory predictions on Rashba splitting, high- temperature ferromagnetism, Skyrmion formation, and so on. Previously reported experimental synthesis of Janus 2D materials relies on high-temperature processing, which limits the crystallinity of as produced 2D layers. In this dissertation, I present a room temperature selective epitaxial atomic re- placement (SEAR) method to convert CVD-grown transition metal dichalcogenides (TMDs) into a Janus structure. Chemically reactive H2 plasma is used to selectively etch off the top layer of chalcogen atoms and the introduction of replacement chalco- gen source in-situ allows for the achievement of Janus structures in one step at room temperature. It is confirmed that the produced Janus monolayers possess high crys- tallinity and good excitonic properties. Moving forward, I show the fabrication of lateral and vertical heterostructures of Janus materials, which are predicted to show exotic properties because of the intrinsic polarization field. To efficiently screen other kinds of interesting Janus structures, a new plasma chamber is designed to allow in-situ optical measurement on the target monolayer during the SEAR process. Successful conversion is seen on mechanically exfoliated MoSe2 and WSe2, and insights into reaction kinetics are gain from Raman spectra evolution. Using the monitoring ability, Janus SNbSe is synthesized for the first time. It’s also demonstrated that the overall crystallinity of as produced Janus monolayer SWSe and SMoSe are correlated with the source of monolayer TMDs. Overall, the synthesis of the Janus monolayers using the described method paves the way to the production of highly crystalline Janus materials, and with the in-situ monitoring ability, a deeper understanding of the mechanism is reached. This will accelerate future exploration of other Janus materials synthesis, and confirmation and discovery of their exciting quantum properties.
ContributorsQin, Ying (Author) / Tongay, Sefaattin (Thesis advisor) / Zhuang, Houlong (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2021
129462-Thumbnail Image.png
Description

We develop a general framework to analyze the controllability of multiplex networks using multiple-relation networks and multiple-layer networks with interlayer couplings as two classes of prototypical systems. In the former, networks associated with different physical variables share the same set of nodes and in the latter, diffusion processes take place.

We develop a general framework to analyze the controllability of multiplex networks using multiple-relation networks and multiple-layer networks with interlayer couplings as two classes of prototypical systems. In the former, networks associated with different physical variables share the same set of nodes and in the latter, diffusion processes take place. We find that, for a multiple-relation network, a layer exists that dominantly determines the controllability of the whole network and, for a multiple-layer network, a small fraction of the interconnections can enhance the controllability remarkably. Our theory is generally applicable to other types of multiplex networks as well, leading to significant insights into the control of complex network systems with diverse structures and interacting patterns.

ContributorsYuan, Zhengzhong (Author) / Zhao, Chen (Author) / Wang, Wen-Xu (Author) / Di, Zengru (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-10-24
129465-Thumbnail Image.png
Description

Mild Cognitive Impairment (MCI) is a transitional stage between normal aging and dementia and people with MCI are at high risk of progression to dementia. MCI is attracting increasing attention, as it offers an opportunity to target the disease process during an early symptomatic stage. Structural magnetic resonance imaging (MRI)

Mild Cognitive Impairment (MCI) is a transitional stage between normal aging and dementia and people with MCI are at high risk of progression to dementia. MCI is attracting increasing attention, as it offers an opportunity to target the disease process during an early symptomatic stage. Structural magnetic resonance imaging (MRI) measures have been the mainstay of Alzheimer's disease (AD) imaging research, however, ventricular morphometry analysis remains challenging because of its complicated topological structure. Here we describe a novel ventricular morphometry system based on the hyperbolic Ricci flow method and tensor-based morphometry (TBM) statistics. Unlike prior ventricular surface parameterization methods, hyperbolic conformal parameterization is angle-preserving and does not have any singularities. Our system generates a one-to-one diffeomorphic mapping between ventricular surfaces with consistent boundary matching conditions. The TBM statistics encode a great deal of surface deformation information that could be inaccessible or overlooked by other methods. We applied our system to the baseline MRI scans of a set of MCI subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI: 71 MCI converters vs. 62 MCI stable). Although the combined ventricular area and volume features did not differ between the two groups, our fine-grained surface analysis revealed significant differences in the ventricular regions close to the temporal lobe and posterior cingulate, structures that are affected early in AD. Significant correlations were also detected between ventricular morphometry, neuropsychological measures, and a previously described imaging index based on fluorodeoxyglucose positron emission tomography (FDG-PET) scans. This novel ventricular morphometry method may offer a new and more sensitive approach to study preclinical and early symptomatic stage AD.

ContributorsShi, Jie (Author) / Stonnington, Cynthia M. (Author) / Thompson, Paul M. (Author) / Chen, Kewei (Author) / Gutman, Boris (Author) / Reschke, Cole (Author) / Baxter, Leslie C. (Author) / Reiman, Eric M. (Author) / Caselli, Richard J. (Author) / Wang, Yalin (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01
129193-Thumbnail Image.png
Description

Plasmonic and metamaterial based nano/micro-structured materials enable spectrally selective resonant absorption, where the resonant bandwidth and absorption intensity can be engineered by controlling the size and geometry of nanostructures. Here, we demonstrate a simple, lithography-free approach for obtaining a resonant and dynamically tunable broadband absorber based on vanadium dioxide (VO2)

Plasmonic and metamaterial based nano/micro-structured materials enable spectrally selective resonant absorption, where the resonant bandwidth and absorption intensity can be engineered by controlling the size and geometry of nanostructures. Here, we demonstrate a simple, lithography-free approach for obtaining a resonant and dynamically tunable broadband absorber based on vanadium dioxide (VO2) phase transition. Using planar layered thin film structures, where top layer is chosen to be an ultrathin (20 nm) VO2 film, we demonstrate broadband IR light absorption tuning (from similar to 90% to similar to 30% in measured absorption) over the entire mid-wavelength infrared spectrum. Our numerical and experimental results indicate that the bandwidth of the absorption bands can be controlled by changing the dielectric spacer layer thickness. Broadband tunable absorbers can find applications in absorption filters, thermal emitters, thermophotovoltaics, and sensing.

ContributorsKocer, Hasan (Author) / Butun, Serkan (Author) / Palacios, Edgar (Author) / Liu, Zizhuo (Author) / Tongay, Sefaattin (Author) / Fu, Deyi (Author) / Wang, Kevin (Author) / Wu, Junqiao (Author) / Aydin, Koray (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-08-21
128984-Thumbnail Image.png
Description

Background: Carriers of the APOE ε4 allele are at increased risk of developing Alzheimer’s disease (AD), and have been shown to have reduced cerebral metabolic rate of glucose (CMRgl) in the same brain areas frequently affected in AD. These individuals also exhibit reduced plasma levels of apolipoprotein E (apoE) attributed to

Background: Carriers of the APOE ε4 allele are at increased risk of developing Alzheimer’s disease (AD), and have been shown to have reduced cerebral metabolic rate of glucose (CMRgl) in the same brain areas frequently affected in AD. These individuals also exhibit reduced plasma levels of apolipoprotein E (apoE) attributed to a specific decrease in the apoE4 isoform as determined by quantification of individual apoE isoforms in APOE ε4 heterozygotes. Whether low plasma apoE levels are associated with structural and functional brain measurements and cognitive performance remains to be investigated.

Methods: Using quantitative mass spectrometry we quantified the plasma levels of total apoE and the individual apoE3 and apoE4 isoforms in 128 cognitively normal APOE ε3/ε4 individuals included in the Arizona APOE cohort. All included individuals had undergone extensive neuropsychological testing and 25 had in addition undergone FDG-PET and MRI to determine CMRgl and regional gray matter volume (GMV).

Results: Our results demonstrated higher apoE4 levels in females versus males and an age-dependent increase in the apoE3 isoform levels in females only. Importantly, a higher relative ratio of apoE4 over apoE3 was associated with GMV loss in the right posterior cingulate and with reduced CMRgl bilaterally in the anterior cingulate and in the right hippocampal area. Additional exploratory analysis revealed several negative associations between total plasma apoE, individual apoE isoform levels, GMV and CMRgl predominantly in the frontal, occipital and temporal areas. Finally, our results indicated only weak associations between apoE plasma levels and cognitive performance which further appear to be affected by sex.

Conclusions: Our study proposes a sex-dependent and age-dependent variation in plasma apoE isoform levels and concludes that peripheral apoE levels are associated with GMV, CMRgl and possibly cognitive performance in cognitively healthy individuals with a genetic predisposition to AD.

ContributorsNielsen, Henrietta M. (Author) / Chen, Kewei (Author) / Lee, Wendy (Author) / Chen, Yinghua (Author) / Bauer, Robert (Author) / Reiman, Eric (Author) / Caselli, Richard (Author) / Bu, Guojun (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-12-21