Matching Items (229)
149992-Thumbnail Image.png
Description
Process variations have become increasingly important for scaled technologies starting at 45nm. The increased variations are primarily due to random dopant fluctuations, line-edge roughness and oxide thickness fluctuation. These variations greatly impact all aspects of circuit performance and pose a grand challenge to future robust IC design. To improve robustness,

Process variations have become increasingly important for scaled technologies starting at 45nm. The increased variations are primarily due to random dopant fluctuations, line-edge roughness and oxide thickness fluctuation. These variations greatly impact all aspects of circuit performance and pose a grand challenge to future robust IC design. To improve robustness, efficient methodology is required that considers effect of variations in the design flow. Analyzing timing variability of complex circuits with HSPICE simulations is very time consuming. This thesis proposes an analytical model to predict variability in CMOS circuits that is quick and accurate. There are several analytical models to estimate nominal delay performance but very little work has been done to accurately model delay variability. The proposed model is comprehensive and estimates nominal delay and variability as a function of transistor width, load capacitance and transition time. First, models are developed for library gates and the accuracy of the models is verified with HSPICE simulations for 45nm and 32nm technology nodes. The difference between predicted and simulated σ/μ for the library gates is less than 1%. Next, the accuracy of the model for nominal delay is verified for larger circuits including ISCAS'85 benchmark circuits. The model predicted results are within 4% error of HSPICE simulated results and take a small fraction of the time, for 45nm technology. Delay variability is analyzed for various paths and it is observed that non-critical paths can become critical because of Vth variation. Variability on shortest paths show that rate of hold violations increase enormously with increasing Vth variation.
ContributorsGummalla, Samatha (Author) / Chakrabarti, Chaitali (Thesis advisor) / Cao, Yu (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2011
149996-Thumbnail Image.png
Description
One of the challenges in future semiconductor device design is excessive rise of power dissipation and device temperatures. With the introduction of new geometrically confined device structures like SOI, FinFET, nanowires and continuous incorporation of new materials with poor thermal conductivities in the device active region, the device thermal problem

One of the challenges in future semiconductor device design is excessive rise of power dissipation and device temperatures. With the introduction of new geometrically confined device structures like SOI, FinFET, nanowires and continuous incorporation of new materials with poor thermal conductivities in the device active region, the device thermal problem is expected to become more challenging in coming years. This work examines the degradation in the ON-current due to self-heating effects in 10 nm channel length silicon nanowire transistors. As part of this dissertation, a 3D electrothermal device simulator is developed that self-consistently solves electron Boltzmann transport equation with 3D energy balance equations for both the acoustic and the optical phonons. This device simulator predicts temperature variations and other physical and electrical parameters across the device for different bias and boundary conditions. The simulation results show insignificant current degradation for nanowire self-heating because of pronounced velocity overshoot effect. In addition, this work explores the role of various placement of the source and drain contacts on the magnitude of self-heating effect in nanowire transistors. This work also investigates the simultaneous influence of self-heating and random charge effects on the magnitude of the ON current for both positively and negatively charged single charges. This research suggests that the self-heating effects affect the ON-current in two ways: (1) by lowering the barrier at the source end of the channel, thus allowing more carriers to go through, and (2) via the screening effect of the Coulomb potential. To examine the effect of temperature dependent thermal conductivity of thin silicon films in nanowire transistors, Selberherr's thermal conductivity model is used in the device simulator. The simulations results show larger current degradation because of self-heating due to decreased thermal conductivity . Crystallographic direction dependent thermal conductivity is also included in the device simulations. Larger degradation is observed in the current along the [100] direction when compared to the [110] direction which is in agreement with the values for the thermal conductivity tensor provided by Zlatan Aksamija.
ContributorsHossain, Arif (Author) / Vasileska, Dragica (Thesis advisor) / Ahmed, Shaikh (Committee member) / Bakkaloglu, Bertan (Committee member) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
150029-Thumbnail Image.png
Description
A dual-channel directional digital hearing aid (DHA) front-end using a fully differential difference amplifier (FDDA) based Microphone interface circuit (MIC) for a capacitive Micro Electro Mechanical Systems (MEMS) microphones and an adaptive-power analog font end (AFE) is presented. The Microphone interface circuit based on FDDA converts

A dual-channel directional digital hearing aid (DHA) front-end using a fully differential difference amplifier (FDDA) based Microphone interface circuit (MIC) for a capacitive Micro Electro Mechanical Systems (MEMS) microphones and an adaptive-power analog font end (AFE) is presented. The Microphone interface circuit based on FDDA converts the capacitance variations into voltage signal, achieves a noise of 32 dB SPL (sound pressure level) and an SNR of 72 dB, additionally it also performs single to differential conversion allowing for fully differential analog signal chain. The analog front-end consists of 40dB VGA and a power scalable continuous time sigma delta ADC, with 68dB SNR dissipating 67u¬W from a 1.2V supply. The ADC implements a self calibrating feedback DAC, for calibrating the 2nd order non-linearity. The VGA and power scalable ADC is fabricated on 0.25 um CMOS TSMC process. The dual channels of the DHA are precisely matched and achieve about 0.5dB gain mismatch, resulting in greater than 5dB directivity index. This will enable a highly integrated and low power DHA
ContributorsNaqvi, Syed Roomi (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Chae, Junseok (Committee member) / Barnby, Hugh (Committee member) / Aberle, James T., 1961- (Committee member) / Arizona State University (Publisher)
Created2011
149788-Thumbnail Image.png
Description
Residue number systems have gained significant importance in the field of high-speed digital signal processing due to their carry-free nature and speed-up provided by parallelism. The critical aspect in the application of RNS is the selection of the moduli set and the design of the conversion units. There have been

Residue number systems have gained significant importance in the field of high-speed digital signal processing due to their carry-free nature and speed-up provided by parallelism. The critical aspect in the application of RNS is the selection of the moduli set and the design of the conversion units. There have been several RNS moduli sets proposed for the implementation of digital filters. However, some are unbalanced and some do not provide the required dynamic range. This thesis addresses the drawbacks of existing RNS moduli sets and proposes a new moduli set for efficient implementation of FIR filters. An efficient VLSI implementation model has been derived for the design of a reverse converter from RNS to the conventional two's complement representation. This model facilitates the realization of a reverse converter for better performance with less hardware complexity when compared with the reverse converter designs of the existing balanced 4-moduli sets. Experimental results comparing multiply and accumulate units using RNS that are implemented using the proposed four-moduli set with the state-of-the-art balanced four-moduli sets, show large improvements in area (46%) and power (43%) reduction for various dynamic ranges. RNS FIR filters using the proposed moduli-set and existing balanced 4-moduli set are implemented in RTL and compared for chip area and power and observed 20% improvements. This thesis also presents threshold logic implementation of the reverse converter.
ContributorsChalivendra, Gayathri (Author) / Vrudhula, Sarma (Thesis advisor) / Shrivastava, Aviral (Committee member) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2011
150375-Thumbnail Image.png
Description
Current sensing ability is one of the most desirable features of contemporary current or voltage mode controlled DC-DC converters. Current sensing can be used for over load protection, multi-stage converter load balancing, current-mode control, multi-phase converter current-sharing, load independent control, power efficiency improvement etc. There are handful existing approaches for

Current sensing ability is one of the most desirable features of contemporary current or voltage mode controlled DC-DC converters. Current sensing can be used for over load protection, multi-stage converter load balancing, current-mode control, multi-phase converter current-sharing, load independent control, power efficiency improvement etc. There are handful existing approaches for current sensing such as external resistor sensing, triode mode current mirroring, observer sensing, Hall-Effect sensors, transformers, DC Resistance (DCR) sensing, Gm-C filter sensing etc. However, each method has one or more issues that prevent them from being successfully applied in DC-DC converter, e.g. low accuracy, discontinuous sensing nature, high sensitivity to switching noise, high cost, requirement of known external power filter components, bulky size, etc. In this dissertation, an offset-independent inductor Built-In Self Test (BIST) architecture is proposed which is able to measure the inductor inductance and DCR. The measured DCR enables the proposed continuous, lossless, average current sensing scheme. A digital Voltage Mode Control (VMC) DC-DC buck converter with the inductor BIST and current sensing architecture is designed, fabricated, and experimentally tested. The average measurement errors for inductance, DCR and current sensing are 2.1%, 3.6%, and 1.5% respectively. For the 3.5mm by 3.5mm die area, inductor BIST and current sensing circuits including related pins only consume 5.2% of the die area. BIST mode draws 40mA current for a maximum time period of 200us upon start-up and the continuous current sensing consumes about 400uA quiescent current. This buck converter utilizes an adaptive compensator. It could update compensator internally so that the overall system has a proper loop response for large range inductance and load current. Next, a digital Average Current Mode Control (ACMC) DC-DC buck converter with the proposed average current sensing circuits is designed and tested. To reduce chip area and power consumption, a 9 bits hybrid Digital Pulse Width Modulator (DPWM) which uses a Mixed-mode DLL (MDLL) is also proposed. The DC-DC converter has a maximum of 12V input, 1-11 V output range, and a maximum of 3W output power. The maximum error of one least significant bit (LSB) delay of the proposed DPWM is less than 1%.
ContributorsLiu, Tao (Author) / Bakkaloglu, Bertan (Thesis advisor) / Ozev, Sule (Committee member) / Vermeire, Bert (Committee member) / Cao, Yu (Committee member) / Arizona State University (Publisher)
Created2011
150348-Thumbnail Image.png
Description
Demands in file size and transfer rates for consumer-orientated products have escalated in recent times. This is primarily due to the emergence of high definition video content. Now factor in the consumer desire for convenience, and we find that wireless service is the most desired approach for inter-connectivity. Consumers expect

Demands in file size and transfer rates for consumer-orientated products have escalated in recent times. This is primarily due to the emergence of high definition video content. Now factor in the consumer desire for convenience, and we find that wireless service is the most desired approach for inter-connectivity. Consumers expect wireless service to emulate wired service with little to virtually no difference in quality of service (QoS). The background section of this document examines the QoS requirements for wireless connectivity of high definition video applications. I then proceed to look at proposed solutions at the physical (PHY) and the media access control (MAC) layers as well as cross-layer schemes. These schemes are subsequently are evaluated in terms of usefulness in a multi-gigabit, 60 GHz wireless multimedia system targeting the average consumer. It is determined that a substantial gap in published literature exists pertinent to this application. Specifically, little or no work has been found that shows how an adaptive PHYMAC cross-layer solution that provides real-time compensation for varying channel conditions might be actually implemented. Further, no work has been found that shows results of such a model. This research proposes, develops and implements in Matlab code an alternate cross-layer solution that will provide acceptable QoS service for multimedia applications. Simulations using actual high definition video sequences are used to test the proposed solution. Results based on the average PSNR metric show that a quasi-adaptive algorithm provides greater than 7 dB of improvement over a non-adaptive approach while a fully-adaptive alogrithm provides over18 dB of improvement. The fully adaptive implementation has been conclusively shown to be superior to non-adaptive techniques and sufficiently superior to even quasi-adaptive algorithms.
ContributorsBosco, Bruce (Author) / Reisslein, Martin (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011
150352-Thumbnail Image.png
Description
Thin film transistors (TFTs) are being used in a wide variety of applications such as image sensors, radiation detectors, as well as for use in liquid crystal displays. However, there is a conspicuous absence of interface electronics for bridging the gap between the flexible sensors and digitized displays. Hence is

Thin film transistors (TFTs) are being used in a wide variety of applications such as image sensors, radiation detectors, as well as for use in liquid crystal displays. However, there is a conspicuous absence of interface electronics for bridging the gap between the flexible sensors and digitized displays. Hence is the need to build the same. In this thesis, the feasibility of building mixed analog circuits in TFTs are explored and demonstrated. A flexible CMOS op-amp is demonstrated using a-Si:H and pentacene TFTs. The achieved performance is ¡Ö 50 dB of DC open loop gain with unity gain frequency (UGF) of 7 kHz. The op-amp is built on the popular 2 stage topology with the 2nd stage being cascoded to provide sufficient gain. A novel biasing circuit was successfully developed modifying the gm biasing circuit to retard the performance degradation as the TFTs aged. A switched capacitor 7 bit DAC was developed in only nMOS topology using a-Si:H TFTs, based on charge sharing concept. The DAC achieved a maximum differential non-linearity (DNL) of 0.6 least significant bit (LSB), while the maximum integral non-linearity (INL) was 1 LSB. TFTs were used as switches in this architecture; as a result the performance was quite unchanged even as the TFTs degraded. A 5 bit fully flash ADC was also designed using all nMOS a-Si:H TFTs. Gray coding was implemented at the output to avoid errors due to comparator meta-stability. Finally a 5 bit current steering DAC was also built using all nMOS a-Si:H TFTs. However, due to process variation, the DNL was increased to 1.2 while the INL was about 1.8 LSB. Measurements were made on the external stress effects on zinc indium oxide (ZIO) TFTs. Electrically induced stresses were studied applying DC bias on the gate and drain. These stresses shifted the device characteristics like threshold voltage and mobility. The TFTs were then mechanically stressed by stretching them across cylindrical structures of various radii. Both the subthreshold swing and mobility underwent significant changes when the stress was tensile while the change was minor under compressive stress, applied parallel to channel length.
ContributorsDey, Aritra (Author) / Allee, David R. (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Garrity, Douglas A (Committee member) / Song, Hongjiang (Committee member) / Clark, Lawrence T (Committee member) / Arizona State University (Publisher)
Created2011
150398-Thumbnail Image.png
Description
Underwater acoustic communications face significant challenges unprecedented in radio terrestrial communications including long multipath delay spreads, strong Doppler effects, and stringent bandwidth requirements. Recently, multi-carrier communications based on orthogonal frequency division multiplexing (OFDM) have seen significant growth in underwater acoustic (UWA) communications, thanks to their well well-known robustness against severely

Underwater acoustic communications face significant challenges unprecedented in radio terrestrial communications including long multipath delay spreads, strong Doppler effects, and stringent bandwidth requirements. Recently, multi-carrier communications based on orthogonal frequency division multiplexing (OFDM) have seen significant growth in underwater acoustic (UWA) communications, thanks to their well well-known robustness against severely time-dispersive channels. However, the performance of OFDM systems over UWA channels significantly deteriorates due to severe intercarrier interference (ICI) resulting from rapid time variations of the channel. With the motivation of developing enabling techniques for OFDM over UWA channels, the major contributions of this thesis include (1) two effective frequencydomain equalizers that provide general means to counteract the ICI; (2) a family of multiple-resampling receiver designs dealing with distortions caused by user and/or path specific Doppler scaling effects; (3) proposal of using orthogonal frequency division multiple access (OFDMA) as an effective multiple access scheme for UWA communications; (4) the capacity evaluation for single-resampling versus multiple-resampling receiver designs. All of the proposed receiver designs have been verified both through simulations and emulations based on data collected in real-life UWA communications experiments. Particularly, the frequency domain equalizers are shown to be effective with significantly reduced pilot overhead and offer robustness against Doppler and timing estimation errors. The multiple-resampling designs, where each branch is tasked with the Doppler distortion of different paths and/or users, overcome the disadvantages of the commonly-used single-resampling receivers and yield significant performance gains. Multiple-resampling receivers are also demonstrated to be necessary for UWA OFDMA systems. The unique design effectively mitigates interuser interference (IUI), opening up the possibility to exploit advanced user subcarrier assignment schemes. Finally, the benefits of the multiple-resampling receivers are further demonstrated through channel capacity evaluation results.
ContributorsTu, Kai (Author) / Duman, Tolga M. (Thesis advisor) / Zhang, Junshan (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2011
150380-Thumbnail Image.png
Description
Great advances have been made in the construction of photovoltaic (PV) cells and modules, but array level management remains much the same as it has been in previous decades. Conventionally, the PV array is connected in a fixed topology which is not always appropriate in the presence of faults in

Great advances have been made in the construction of photovoltaic (PV) cells and modules, but array level management remains much the same as it has been in previous decades. Conventionally, the PV array is connected in a fixed topology which is not always appropriate in the presence of faults in the array, and varying weather conditions. With the introduction of smarter inverters and solar modules, the data obtained from the photovoltaic array can be used to dynamically modify the array topology and improve the array power output. This is beneficial especially when module mismatches such as shading, soiling and aging occur in the photovoltaic array. This research focuses on the topology optimization of PV arrays under shading conditions using measurements obtained from a PV array set-up. A scheme known as topology reconfiguration method is proposed to find the optimal array topology for a given weather condition and faulty module information. Various topologies such as the series-parallel (SP), the total cross-tied (TCT), the bridge link (BL) and their bypassed versions are considered. The topology reconfiguration method compares the efficiencies of the topologies, evaluates the percentage gain in the generated power that would be obtained by reconfiguration of the array and other factors to find the optimal topology. This method is employed for various possible shading patterns to predict the best topology. The results demonstrate the benefit of having an electrically reconfigurable array topology. The effects of irradiance and shading on the array performance are also studied. The simulations are carried out using a SPICE simulator. The simulation results are validated with the experimental data provided by the PACECO Company.
ContributorsBuddha, Santoshi Tejasri (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioğlu, Cihan (Thesis advisor) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2011
150384-Thumbnail Image.png
Description
In this thesis, a Built-in Self Test (BiST) based testing solution is proposed to measure linear and non-linear impairments in the RF Transmitter path using analytical approach. Design issues and challenges with the impairments modeling and extraction in transmitter path are discussed. Transmitter is modeled for I/Q gain & phase

In this thesis, a Built-in Self Test (BiST) based testing solution is proposed to measure linear and non-linear impairments in the RF Transmitter path using analytical approach. Design issues and challenges with the impairments modeling and extraction in transmitter path are discussed. Transmitter is modeled for I/Q gain & phase mismatch, system non-linearity and DC offset using Matlab. BiST architecture includes a peak detector which includes a self mode mixer and 200 MHz filter. Self Mode mixing operation with filtering removes the high frequency signal contents and allows performing analysis on baseband frequency signals. Transmitter impairments were calculated using spectral analysis of output from the BiST circuitry using an analytical method. Matlab was used to simulate the system with known test impairments and impairment values from simulations were calculated based on system modeling in Mathematica. Simulated data is in good correlation with input test data along with very fast test time and high accuracy. The key contribution of the work is that, system impairments are extracted from transmitter response at baseband frequency using envelope detector hence eliminating the need of expensive high frequency ATE (Automated Test Equipments).
ContributorsGoyal, Nitin (Author) / Ozev, Sule (Thesis advisor) / Duman, Tolga (Committee member) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2011