Matching Items (43)
156901-Thumbnail Image.png
Description
Fossil fuel CO2 (FFCO2) emissions are recognized as the dominant greenhouse gas driving climate change (Enting et. al., 1995; Conway et al., 1994; Francey et al., 1995; Bousquet et. al., 1999). Transportation is a major component of FFCO2 emissions, especially in urban areas. An improved understanding of on-road FFCO2 emission

Fossil fuel CO2 (FFCO2) emissions are recognized as the dominant greenhouse gas driving climate change (Enting et. al., 1995; Conway et al., 1994; Francey et al., 1995; Bousquet et. al., 1999). Transportation is a major component of FFCO2 emissions, especially in urban areas. An improved understanding of on-road FFCO2 emission at high spatial resolution is essential to both carbon science and mitigation policy. Though considerable research has been accomplished within a few high-income portions of the planet such as the United States and Western Europe, little work has attempted to comprehensively quantify high-resolution on-road FFCO2 emissions globally. Key questions for such a global quantification are: (1) What are the driving factors for on-road FFCO2 emissions? (2) How robust are the relationships? and (3) How do on-road FFCO2 emissions vary with urban form at fine spatial scales?

This study used urban form/socio-economic data combined with self-reported on-road FFCO2 emissions for a sample of global cities to estimate relationships within a multivariate regression framework based on an adjusted STIRPAT model. The on-road high-resolution (whole-city) regression FFCO2 model robustness was evaluated by introducing artificial error, conducting cross-validation, and assessing relationship sensitivity under various model specifications. Results indicated that fuel economy, vehicle ownership, road density and population density were statistically significant factors that correlate with on-road FFCO2 emissions. Of these four variables, fuel economy and vehicle ownership had the most robust relationships.

A second regression model was constructed to examine the relationship between global on-road FFCO2 emissions and urban form factors (described by population

ii

density, road density, and distance to activity centers) at sub-city spatial scales (1 km2). Results showed that: 1) Road density is the most significant (p<2.66e-037) predictor of on-road FFCO2 emissions at the 1 km2 spatial scale; 2) The correlation between population density and on-road FFCO2 emissions for interstates/freeways varies little by city type. For arterials, on-road FFCO2 emissions show a stronger relationship to population density in clustered cities (slope = 0.24) than dispersed cities (slope = 0.13). FFCO2 3) The distance to activity centers has a significant positive relationship with on-road FFCO2 emission for the interstate and freeway toad types, but an insignificant relationship with the arterial road type.
ContributorsSong, Yang (Author) / Gurney, Kevin (Thesis advisor) / Kuby, Michael (Committee member) / Golub, Aaron (Committee member) / Chester, Mikhail (Committee member) / Selover, Nancy (Committee member) / Arizona State University (Publisher)
Created2018
126671-Thumbnail Image.png
Description
Hydroelectric dams, often part of larger development programs in developing countries are characterized by conflicting interests of stakeholder groups, emblematic for the contested nature of development. Because of these different interests, stakeholders develop different evaluations of such projects, that can be understood as frames of events and projects. Frames are

Hydroelectric dams, often part of larger development programs in developing countries are characterized by conflicting interests of stakeholder groups, emblematic for the contested nature of development. Because of these different interests, stakeholders develop different evaluations of such projects, that can be understood as frames of events and projects. Frames are “the different ways of understanding or representing a system" (Leach et al. 2010 b). In this article, I analyze frames stake-holders use to convey a distinct perspective on problems, root causes, solutions, and benefits associ-ated with the hydroelectric Gibe III dam and accompanying sugarcane plantations in the Omo Valley, Ethiopia. I found that stakeholders use contrasting frames and narratives to describe the projects, but partially also propose mutual solutions. Stakeholders incorporate modernist arguments to justify their actions. Supporters and opponents address different aspects of the livelihoods of Omo valley inhabitants. By analyzing different frames and narratives, this paper contributes to opening up and broadening the debate on the development activities in the Omo valley and shows alternative pathways for sustainable development projects in Ethiopia.
ContributorsGerigk, Rebecca (Author) / Fischer, Daniel (Contributor) / Aggarwal, Rimjhim (Contributor) / Hodbod, Jennifer (Contributor)
Created2018-06-27
128096-Thumbnail Image.png
Description

The objective of the Indianapolis Flux Experiment (INFLUX) is to develop, evaluate and improve methods for measuring greenhouse gas (GHG) emissions from cities. INFLUX’s scientific objectives are to quantify CO2 and CH4 emission rates at 1 km2 resolution with a 10% or better accuracy and precision, to determine whole-city emissions

The objective of the Indianapolis Flux Experiment (INFLUX) is to develop, evaluate and improve methods for measuring greenhouse gas (GHG) emissions from cities. INFLUX’s scientific objectives are to quantify CO2 and CH4 emission rates at 1 km2 resolution with a 10% or better accuracy and precision, to determine whole-city emissions with similar skill, and to achieve high (weekly or finer) temporal resolution at both spatial resolutions. The experiment employs atmospheric GHG measurements from both towers and aircraft, atmospheric transport observations and models, and activity-based inventory products to quantify urban GHG emissions. Multiple, independent methods for estimating urban emissions are a central facet of our experimental design. INFLUX was initiated in 2010 and measurements and analyses are ongoing. To date we have quantified urban atmospheric GHG enhancements using aircraft and towers with measurements collected over multiple years, and have estimated whole-city CO2 and CH4 emissions using aircraft and tower GHG measurements, and inventory methods. Significant differences exist across methods; these differences have not yet been resolved; research to reduce uncertainties and reconcile these differences is underway. Sectorally- and spatially-resolved flux estimates, and detection of changes of fluxes over time, are also active research topics. Major challenges include developing methods for distinguishing anthropogenic from biogenic CO2 fluxes, improving our ability to interpret atmospheric GHG measurements close to urban GHG sources and across a broader range of atmospheric stability conditions, and quantifying uncertainties in inventory data products. INFLUX data and tools are intended to serve as an open resource and test bed for future investigations. Well-documented, public archival of data and methods is under development in support of this objective.

ContributorsDavis, Kenneth J. (Author) / Deng, Aijun (Author) / Lauvaux, Thomas (Author) / Miles, Natasha L. (Author) / Richardson, Scott J. (Author) / Sarmiento, Daniel P. (Author) / Gurney, Kevin (Author) / Hardesty, R. Michael (Author) / Bonin, Timothy A. (Author) / Brewer, W. Alan (Author) / Lamb, Brian K. (Author) / Shepson, Paul B. (Author) / Harvey, Rebecca M. (Author) / Cambaliza, Maria O. (Author) / Sweeney, Colm (Author) / Turnbull, Jocelyn C. (Author) / Whetstone, James (Author) / Karion, Anna (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-23