Matching Items (57)
128245-Thumbnail Image.png
Description

Research on collective action and common-pool resources is extensive. However, little work has concentrated on the effect of variability in resource availability and collective action, especially in the context of asymmetric access to resources. Earlier works have demonstrated that environmental variability often leads to a reduction of collective action in

Research on collective action and common-pool resources is extensive. However, little work has concentrated on the effect of variability in resource availability and collective action, especially in the context of asymmetric access to resources. Earlier works have demonstrated that environmental variability often leads to a reduction of collective action in the governance of shared resources. Here we assess how environmental variability may impact collective action. We performed a behavioral experiment involving an irrigation dilemma. In this dilemma participants invested first into a public fund that generated water resources for the group, which were subsequently appropriated by one participant at a time from head end to tail end. The amount of resource generated for the given investment level was determined by a payoff table and a stochastic event representing environmental variability, i.e., rainfall. Results show that that (1) upstream users’ behavior is by far the most important variable in determining the outcome of collective action; (2) environmental variability (i.e. risk level in investing in the resource) has little effect on individual investment and extraction levels; and (3) the action-reaction feedback is fundamental in determining the success or failure of communities.

ContributorsBaggio, Jacopo (Author) / Rollins, Nathan (Author) / Perez, Irene (Author) / Janssen, Marco (Author) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2015
127950-Thumbnail Image.png
Description

Photoautotrophs assimilate oxidized carbon obtained from one of two sources: dissolved or atmospheric. Despite its size, the pool of lithospheric carbonate is not known to be a direct source for autotrophy. Yet, the mechanism that euendolithic cyanobacteria use to excavate solid carbonates suggests that minerals could directly supply CO[subscript 2]

Photoautotrophs assimilate oxidized carbon obtained from one of two sources: dissolved or atmospheric. Despite its size, the pool of lithospheric carbonate is not known to be a direct source for autotrophy. Yet, the mechanism that euendolithic cyanobacteria use to excavate solid carbonates suggests that minerals could directly supply CO[subscript 2] for autotrophy. Here, we use stable isotopes and NanoSIMS to show that the cyanobacterium Mastigocoleus testarum derives most of its carbon from the mineral it excavates, growing preferentially as an endolith when lacking dissolved CO[subscript 2]. Furthermore, natural endolithic communities from intertidal marine carbonate outcrops present carbon isotopic signatures consistent with mineral-sourced autotrophy. These data demonstrate a direct geomicrobial link between mineral carbonate pools and reduced organic carbon, which, given the geographical extent of carbonate outcrops, is likely of global relevance. The ancient fossil record of euendolithic cyanobacteria suggests that biological fixation of solid carbonate could have been relevant since the mid-Proterozoic.

ContributorsGuida, Brandon (Author) / Bose, Maitrayee (Author) / Garcia-Pichel, Ferran (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-10-18
128567-Thumbnail Image.png
Description

Soil surface temperature, an important driver of terrestrial biogeochemical processes, depends strongly on soil albedo, which can be significantly modified by factors such as plant cover. In sparsely vegetated lands, the soil surface can be colonized by photosynthetic microbes that build biocrust communities. Here we use concurrent physical, biochemical and

Soil surface temperature, an important driver of terrestrial biogeochemical processes, depends strongly on soil albedo, which can be significantly modified by factors such as plant cover. In sparsely vegetated lands, the soil surface can be colonized by photosynthetic microbes that build biocrust communities. Here we use concurrent physical, biochemical and microbiological analyses to show that mature biocrusts can increase surface soil temperature by as much as 10 °C through the accumulation of large quantities of a secondary metabolite, the microbial sunscreen scytonemin, produced by a group of late-successional cyanobacteria. Scytonemin accumulation decreases soil albedo significantly. Such localized warming has apparent and immediate consequences for the soil microbiome, inducing the replacement of thermosensitive bacterial species with more thermotolerant forms. These results reveal that not only vegetation but also microorganisms are a factor in modifying terrestrial albedo, potentially impacting biosphere feedbacks on past and future climate, and call for a direct assessment of such effects at larger scales.

ContributorsCouradeau, Estelle (Author) / Karaoz, Ulas (Author) / Lim, Hsiao Chien (Author) / Nunes Da Rocha, Ulisses (Author) / Northen, Trent (Author) / Brodie, Eoin (Author) / Garcia-Pichel, Ferran (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-01-20
128586-Thumbnail Image.png
Description

The heterocyclic indole-alkaloid scytonemin is a sunscreen found exclusively among cyanobacteria. An 18-gene cluster is responsible for scytonemin production in Nostoc punctiforme ATCC 29133. The upstream genes scyABCDEF in the cluster are proposed to be responsible for scytonemin biosynthesis from aromatic amino acid substrates. In vitro studies of ScyA, ScyB,

The heterocyclic indole-alkaloid scytonemin is a sunscreen found exclusively among cyanobacteria. An 18-gene cluster is responsible for scytonemin production in Nostoc punctiforme ATCC 29133. The upstream genes scyABCDEF in the cluster are proposed to be responsible for scytonemin biosynthesis from aromatic amino acid substrates. In vitro studies of ScyA, ScyB, and ScyC proved that these enzymes indeed catalyze initial pathway reactions. Here we characterize the role of ScyD, ScyE, and ScyF, which were logically predicted to be responsible for late biosynthetic steps, in the biological context of N. punctiforme. In-frame deletion mutants of each were constructed (ΔscyD, ΔscyE, and ΔscyF) and their phenotypes studied. Expectedly, ΔscyE presents a scytoneminless phenotype, but no accumulation of the predicted intermediaries. Surprisingly, ΔscyD retains scytonemin production, implying that it is not required for biosynthesis. Indeed, scyD presents an interesting evolutionary paradox: it likely originated in a duplication event from scyE, and unlike other genes in the operon, it has not been subjected to purifying selection. This would suggest that it is a pseudogene, and yet scyD is highly conserved in the scytonemin operon of cyanobacteria. ΔscyF also retains scytonemin production, albeit exhibiting a reduction of the production yield compared with the wild-type. This indicates that ScyF is not essential but may play an adjuvant role for scytonemin synthesis. Altogether, our findings suggest that these downstream genes are not responsible, as expected, for the late steps of scytonemin synthesis and we must look for those functions elsewhere. These findings are particularly important for biotechnological production of this sunscreen through heterologous expression of its genes in more tractable organisms.

ContributorsFerreira, Daniela (Author) / Garcia-Pichel, Ferran (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-05-18
128547-Thumbnail Image.png
Description

Soils are arguably the most microbially diverse ecosystems. Physicochemical properties have been associated with the maintenance of this diversity. Yet, the role of microbial substrate specialization is largely unexplored since substrate utilization studies have focused on simple substrates, not the complex mixtures representative of the soil environment. Here we examine

Soils are arguably the most microbially diverse ecosystems. Physicochemical properties have been associated with the maintenance of this diversity. Yet, the role of microbial substrate specialization is largely unexplored since substrate utilization studies have focused on simple substrates, not the complex mixtures representative of the soil environment. Here we examine the exometabolite composition of desert biological soil crusts (biocrusts) and the substrate preferences of seven biocrust isolates. The biocrust's main primary producer releases a diverse array of metabolites, and isolates of physically associated taxa use unique subsets of the complex metabolite pool. Individual isolates use only 13−26% of available metabolites, with only 2 out of 470 used by all and 40% not used by any. An extension of this approach to a mesophilic soil environment also reveals high levels of microbial substrate specialization. These results suggest that exometabolite niche partitioning may be an important factor in the maintenance of microbial diversity.

ContributorsBaran, Richard (Author) / Brodie, Eoin L. (Author) / Mayberry-Lewis, Jazmine (Author) / Hummel, Eric (Author) / Nunes Da Rocha, Ulisses (Author) / Chakraborty, Romy (Author) / Bowen, Benjamin P. (Author) / Karaoz, Ulas (Author) / Cadillo-Quiroz, Hinsby (Author) / Garcia-Pichel, Ferran (Author) / Northern, Trent R. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-09-22
128452-Thumbnail Image.png
Description

Mastigocoleus testarum strain BC008 is a model organism used to study marine photoautotrophic carbonate dissolution. It is a multicellular, filamentous, diazotrophic, euendolithic cyanobacterium ubiquitously found in marine benthic environments. We present an accurate draft genome assembly of 172 contigs spanning 12,700,239 bp with 9,131 annotated genes with an average G+C%

Mastigocoleus testarum strain BC008 is a model organism used to study marine photoautotrophic carbonate dissolution. It is a multicellular, filamentous, diazotrophic, euendolithic cyanobacterium ubiquitously found in marine benthic environments. We present an accurate draft genome assembly of 172 contigs spanning 12,700,239 bp with 9,131 annotated genes with an average G+C% of 37.3.

ContributorsGuida, Brandon (Author) / Garcia-Pichel, Ferran (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-01-28
129594-Thumbnail Image.png
Description

Our species exhibits spectacular success due to cumulative culture. While cognitive evolution of social learning mechanisms may be partially responsible for adaptive human culture, features of early human social structure may also play a role by increasing the number potential models from which to learn innovations. We present interview data

Our species exhibits spectacular success due to cumulative culture. While cognitive evolution of social learning mechanisms may be partially responsible for adaptive human culture, features of early human social structure may also play a role by increasing the number potential models from which to learn innovations. We present interview data on interactions between same-sex adult dyads of Ache and Hadza hunter-gatherers living in multiple distinct residential bands (20 Ache bands; 42 Hadza bands; 1201 dyads) throughout a tribal home range. Results show high probabilities (5%–29% per year) of cultural and cooperative interactions between randomly chosen adults. Multiple regression suggests that ritual relationships increase interaction rates more than kinship, and that affinal kin interact more often than dyads with no relationship. These may be important features of human sociality. Finally, yearly interaction rates along with survival data allow us to estimate expected lifetime partners for a variety of social activities, and compare those to chimpanzees. Hadza and Ache men are estimated to observe over 300 men making tools in a lifetime, whereas male chimpanzees interact with only about 20 other males in a lifetime. High intergroup interaction rates in ancestral humans may have promoted the evolution of cumulative culture.

ContributorsHill, Kim (Author) / Wood, Brian M. (Author) / Baggio, Jacopo (Author) / Hurtado, Ana (Author) / Boyd, Robert (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-07-21