Matching Items (89)
137292-Thumbnail Image.png
Description
Wolbachia is a genus of obligately intracellular bacterial endosymbionts of arthropods and nematodes, infecting up to 66% of all such species. In order to ensure its transmission, it may modify host reproduction by inducing one of four phenotypes: cytoplasmic incompatibility, feminization of genetic males, killing of male embryos, and induction

Wolbachia is a genus of obligately intracellular bacterial endosymbionts of arthropods and nematodes, infecting up to 66% of all such species. In order to ensure its transmission, it may modify host reproduction by inducing one of four phenotypes: cytoplasmic incompatibility, feminization of genetic males, killing of male embryos, and induction of thelytokous parthenogenesis. This investigation was a characterization of the so-far unexamined Wolbachia infection of Pogonomyrmex ants. Five main questions were addressed: whether Wolbachia infection rates vary between North and South America, whether infection rates are dependent on host range, whether Wolbachia affects the caste determination of P. barbatus, whether infection rates in Pogonomyrmex are similar to those of other ants, and whether Wolbachia phylogeny parallels the phylogeny of its Pogonomyrmex hosts. Using PCR amplification of the wsp, ftsZ, and gatB loci, Wolbachia infections were detected in four of fifteen Pogonomyrmex species (26.7%), providing the first known evidence of Wolbachia infection in this genus. All infected species were from South America, specifically Argentina. Therefore, Wolbachia has no role in the caste determination of the North American species P. barbatus. Additionally, while it appears that the incidence of Wolbachia in Pogonomyrmex may be limited to South America, host range did not correlate with infection status. The incidence of Wolbachia in Pogonomyrmex as a whole was similar to that of invasive Solenopsis and Linepithema species, but not to Wasmannia auropunctata or Anoplolepis gracilipes, which retain Wolbachia infection in non-native locations. This suggests that there may be a parallel in Wolbachia infection spread in certain short-term models of species colonization and long-term models of genus radiation. Finally, there was no congruity between host and parasite phylogeny according to maximum likelihood analyses, necessarily due to horizontal transfer of Wolbachia between hosts and lateral gene transfer between Wolbachia strains within hosts.
ContributorsHarris, Alexandre Marm (Author) / Gadau, Juergen (Thesis director) / Martin, Thomas (Committee member) / Helmkampf, Martin Erik (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137543-Thumbnail Image.png
Description
Temnothorax ants are a model species for studying collective decision-making. When presented with multiple nest sites, they are able to collectively select the best one and move the colony there. When a scout encounters a nest site, she will spend some time exploring it. In theory she should explore the

Temnothorax ants are a model species for studying collective decision-making. When presented with multiple nest sites, they are able to collectively select the best one and move the colony there. When a scout encounters a nest site, she will spend some time exploring it. In theory she should explore the site for long enough to determine both its quality and an estimate of the number of ants there. This ensures that she selects a good nest site and that there are enough scouts who know about the new nest site to aid her in relocating the colony. It also helps to ensure that the colony reaches a consensus rather than dividing between nest sites. When a nest site reaches a certain threshold of ants, a quorum has been reached and the colony is committed to that nest site. If a scout visits a good nest site where a quorum has not been reached, she will lead a tandem run to bring another scout there so that they can learn the way and later aid in recruitment. At a site where a quorum has been reached, scouts will instead perform transports to carry ants and brood there from the old nest. One piece that is missing in all of this is the mechanism. How is a quorum sensed? One hypothesis is that the encounter rate (average number of encounters with nest mates per second) that an ant experiences at a nest site allows her to estimate the population at that site and determine whether a quorum has been reached. In this study, encounter rate and entrance time were both shown to play a role in whether an ant decided to lead a tandem run or perform a transport. Encounter rate was shown to have a significant impact on how much time an ant spent at a nest site before making her decision, and encounter rates significantly increased as migrations progressed. It was also shown to individual ants did not differ from each other in their encounter rates, visit lengths, or entrance times preceding their first transports or tandem runs, studied across four different migrations. Ants were found to spend longer on certain types of encounters, but excluding certain types of encounters from the encounter rate was not found to change the correlations that were observed. It was also found that as the colony performed more migrations, it became significantly faster at moving to the new nest.
ContributorsJohnson, Christal Marie (Author) / Pratt, Stephen (Thesis director) / Pavlic, Theodore (Committee member) / Shaffer, Zachary (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
136666-Thumbnail Image.png
Description
Two primary contexts for the adaptive evolution of bright coloration are competition for mates (i.e. mate choice) and avoiding predator attacks (i.e. warning coloration). Bright animal coloration can be iridescent, in which the surface appears to change color with changing viewing or illumination angle. Bright animal coloration can also be

Two primary contexts for the adaptive evolution of bright coloration are competition for mates (i.e. mate choice) and avoiding predator attacks (i.e. warning coloration). Bright animal coloration can be iridescent, in which the surface appears to change color with changing viewing or illumination angle. Bright animal coloration can also be produced by pigments, which do not appear to change color with changing viewing or illumination angle. The Pipevine Swallowtail, Battus philenor, is unique in having both sexual signals and warning coloration that include iridescent and pigment components, both of which are variable in color. The aim of our study was to examine the role genes play in producing this variation, providing us a sense of potential indirect benefits of female choice. We tested the hypothesis that color variation has a genetic component. We predicted that in a full-sib analysis there should be greater variation in the coloration of the sexual and warning signal among families than within families. We reared B. philenor under standard laboratory conditions and analyzed heritability using a full-sib analysis. We collected reflectance measurements for components of the sexual and warning signal iridescence using a spectrophotometer and used CLR (color analysis software) to extract brightness, hue, and chroma values. We used a multivariate ANOVA (IBM SPSS, v. 21) to analyze the warning signal variation, and a generalized linear mixed model (IBM SPSS, v. 21) to analyze the sexual versus warning signal variation in males. A significance value of 0.05 was used for both analyses. Our results indicated a genetic component to coloration, implicating indirect benefits in B. philenor female mate bias. Further research on bright coloration in B. philenor indicates that there may also be direct benefits of female mate choice.
ContributorsOlzer, Rachel Maureen (Co-author) / Raymundo, Andrew (Co-author) / Pegram, Kimberly (Co-author) / Rutowski, Ronald (Co-author, Thesis director) / Pratt, Stephen (Committee member) / Papaj, Daniel (Committee member) / Barrett, The Honors College (Contributor) / School of Social Transformation (Contributor) / School of Social Sciences (Contributor)
Created2014-12
141475-Thumbnail Image.png
Description

The evolution of cooperation is a fundamental problem in biology, especially for non-relatives, where indirect fitness benefits cannot counter within-group inequalities. Multilevel selection models show how cooperation can evolve if it generates a group-level advantage, even when cooperators are disadvantaged within their group. This allows the possibility of group selection,

The evolution of cooperation is a fundamental problem in biology, especially for non-relatives, where indirect fitness benefits cannot counter within-group inequalities. Multilevel selection models show how cooperation can evolve if it generates a group-level advantage, even when cooperators are disadvantaged within their group. This allows the possibility of group selection, but few examples have been described in nature. Here we show that group selection can explain the evolution of cooperative nest founding in the harvester ant Pogonomyrmex californicus. Through most of this species’ range, colonies are founded by single queens, but in some populations nests are instead founded by cooperative groups of unrelated queens. In mixed groups of cooperative and single-founding queens, we found that aggressive individuals had a survival advantage within their nest, but foundress groups with such non-cooperators died out more often than those with only cooperative members. An agent-based model shows that the between-group advantage of the cooperative phenotype drives it to fixation, despite its within-group disadvantage, but only when population density is high enough to make between-group competition intense. Field data show higher nest density in a population where cooperative founding is common, consistent with greater density driving the evolution of cooperative foundation through group selection.

ContributorsShaffer, Zachary (Author) / Sasaki, Takao (Author) / Haney, Brian (Author) / Janssen, Marco (Author) / Pratt, Stephen (Author) / Fewell, Jennifer (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-07-28
148329-Thumbnail Image.png
Description

Olfactory discrimination tasks can provide useful information about how olfaction may have evolved by demonstrating which types of compounds animals will detect and respond to. Ants discriminate between nestmates and non-nestmates by using olfaction to detect the cuticular hydrocarbons on other ants, and Camponotus floridanus have particularly clear and aggressive

Olfactory discrimination tasks can provide useful information about how olfaction may have evolved by demonstrating which types of compounds animals will detect and respond to. Ants discriminate between nestmates and non-nestmates by using olfaction to detect the cuticular hydrocarbons on other ants, and Camponotus floridanus have particularly clear and aggressive responses to non-nestmates. A new method of adding hydrocarbons to ants, the “Snow Globe” method was further optimized and tested on C. floridanus. It involves adding hydrocarbons and a solvent to a vial of water, vortexing it, suspending hydrocarbon droplets throughout the solution, and then dipping a narcotized ant in. It is hoped this method can evenly coat ants in hydrocarbon. Ants were treated with heptacosane (C27), nonacosane (C29), hentriacontane (C31), a mixture of C27/C29/C31, 2-methyltriacontane (2MeC30), S-3-methylhentriacontane (SMeC31), and R-3-methylhentriacontane (RMeC31). These were chosen to see how ants reacted in a nestmate recognition context to methyl-branched hydrocarbons, R and S enantiomers, and to multiple added alkanes. Behavior assays were performed on treated ants, as well as two untreated controls, a foreign ant and a nestmate ant. There were 15 replicates of each condition, using 15 different queenright colonies. The Snow Globe method successfully transfers hydrocarbons, as confirmed by solid phase microextraction (SPME) done on treated ants, and the behavior assay data shows the foreign control, SMeC31, and the mixture of C27/29/31 were all statistically significant in their differences from the native control. The multiple alkane mixture received a significant response while single alkanes did not, which supports the idea that larger variations in hydrocarbon profile are needed for an ant to be perceived as foreign. The response to SMeC31 shows C. floridanus can respond during nestmate recognition to hydrocarbons that are not naturally occurring, and it indicates the nestmate recognition process may simply be responding to any compounds not found in the colony profile and rather than detecting particular foreign compounds.

ContributorsNoss, Serena Marie (Author) / Liebig, Juergen (Thesis director) / Pratt, Stephen (Committee member) / Haight, Kevin (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
This paper is a survey of the Oribatid mites of the North American deserts. It contains four chapters. Chapter 1 gives an overview of the biology of mites and oribatids. I talk about their phylogeny, body parts, food sources, habitats, and lifecycle. In Chapter 2, I identify a group of

This paper is a survey of the Oribatid mites of the North American deserts. It contains four chapters. Chapter 1 gives an overview of the biology of mites and oribatids. I talk about their phylogeny, body parts, food sources, habitats, and lifecycle. In Chapter 2, I identify a group of 59 oribatid species with cosmopolitan or semi-cosmopolitan distributions and examine how the number of biogeographical regions where a species has been detected relates to body length and to reproductive mode (sexual or parthenogenetic). I also present an illustrated guide (File S1) to 58 of these species for use in identifying cosmopolitan species in oribatid surveys. Chapter 3 describes the current state of knowledge of oribatid diversity in the southwestern US and northern Mexico. In total, I was able to find records for 340 oribatid species from this region in the published literature and museum collections. However, we can see that some states, such as Arizona and Sonora, do not have many published records and that further studies are needed to more fully characterize oribatid diversity within this region. Finally, Chapter 4 describes some preliminary efforts to culture oribatid mites sampled from oak woodland in the Santa Rita Mountains of southeast Arizona. Although this work was interrupted by the COVID-19 crisis, I was able to keep three oribatid species in captivity long enough for them to lay eggs and for some of these eggs to hatch.
ContributorsZhao, Erxuan (Author) / Taylor, Jay (Thesis director) / Pratt, Stephen (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
130932-Thumbnail Image.png
Description
Across the animal kingdom, communication serves a vital purpose. The transfer of information between and among species is often paramount to many behaviors including mating, collaboration, and defense. While research has provided tremendous insight into animal communication and interaction, there is still much that we have yet to understand. Due

Across the animal kingdom, communication serves a vital purpose. The transfer of information between and among species is often paramount to many behaviors including mating, collaboration, and defense. While research has provided tremendous insight into animal communication and interaction, there is still much that we have yet to understand. Due to their reliance on interactions that maximize efficiency within their complicated colony structure and array of member roles, eusocial insects serve as an excellent model for animal communication. Among eusocial insects, ants are some of the most heavily researched, with a tremendous amount of literature focused on their cuticular hydrocarbons. Along with serving as a waterproofing agent, cuticular hydrocarbons also play a major role in recognition and communication in these insects. By studying the importance of hydrocarbons in ant social structure, their tremendously specialized olfactory system, and the use of learning assays in its study, parallels between communication in ants and other animals are revealed, demonstrating how ants serve as a relevant model for animal communication as a whole.
ContributorsSpirek, Benton Forest Ensminger (Author) / Liebig, Juergen (Thesis director) / Pratt, Stephen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
Description
The desert ant, Novomessor albisetosus, is an ideal model system for studying collective transport in ants and self-organized cooperation in natural systems. Small teams collect and stabilize around objects encountered by these colonies in the field, and the teams carry them in straight paths at a regulated velocity back to

The desert ant, Novomessor albisetosus, is an ideal model system for studying collective transport in ants and self-organized cooperation in natural systems. Small teams collect and stabilize around objects encountered by these colonies in the field, and the teams carry them in straight paths at a regulated velocity back to nearby nest entrances. The puzzling finding that teams are slower than individuals contrasts other cases of cooperative transport in ants. The statistical distribution of speeds has been found to be consistent with the slowest-ant model, but the key assumption that individual ants consistently vary in speed has not been tested. To test this, information is needed about the natural distribution of individual ant speeds in colonies and whether some ants are intrinsically slow or fast. To investigate the natural, individual-level variation in ants carrying loads, data were collected on single workers carrying fig seeds in arenas separated from other workers. Using three separate, small arenas, the instantaneous speed of each seed-laden worker was recorded when she picked up a fig seed and transported within the arena. Instantaneous speeds were measured by dividing the distance traveled in each frame by how much time had passed.
There were nine ants who transported a fig seed numerous times and there was a clear variation in their average instantaneous speed. Within an ant, slightly varying speeds were found as well, but within-ant speeds were not as varied as speed across ants. These results support the conclusion that there is intrinsic variation in the speed of an individual which supports the slowest-ant model, but this may require further experimentation to test thoroughly. This information aids in the understanding of the natural variation of ants cooperatively carrying larger loads in groups.
ContributorsCastro, Samantha (Author) / Pavlic, Theodore (Thesis director) / Pratt, Stephen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
130413-Thumbnail Image.png
Description
Because collective cognition emerges from local signaling among group members, deciphering communication systems is crucial to understanding the underlying mechanisms. Alarm signals are widespread in the social insects and can elicit a variety of behavioral responses to danger, but the functional plasticity of these signals has not been well studied.

Because collective cognition emerges from local signaling among group members, deciphering communication systems is crucial to understanding the underlying mechanisms. Alarm signals are widespread in the social insects and can elicit a variety of behavioral responses to danger, but the functional plasticity of these signals has not been well studied. Here we report an alarm pheromone in the ant Temnothorax rugatulus that elicits two different behaviors depending on context. When an ant was tethered inside an unfamiliar nest site and unable to move freely, she released a pheromone from her mandibular gland that signaled other ants to reject this nest as a potential new home, presumably to avoid potential danger. When the same pheromone was presented near the ants' home nest, they were instead attracted to it, presumably to respond to a threat to the colony. We used coupled gas chromatography/mass spectrometry to identify candidate compounds from the mandibular gland and tested each one in a nest choice bioassay. We found that 2,5-dimethylpyrazine was sufficient to induce rejection of a marked new nest and also to attract ants when released at the home nest. This is the first detailed investigation of chemical communication in the leptothoracine ants. We discuss the possibility that this pheromone's deterrent function can improve an emigrating colony's nest site selection performance.
Created2014-09-01
132382-Thumbnail Image.png
Description
When ants encounter liquid food, they have two options of transporting that food to their nests. The first is the social bucket method in which liquid is carried in the mandibles of the workers back to the nest. The second is trophallaxis in which liquid is imbibed and then transported

When ants encounter liquid food, they have two options of transporting that food to their nests. The first is the social bucket method in which liquid is carried in the mandibles of the workers back to the nest. The second is trophallaxis in which liquid is imbibed and then transported inside the ant back to the nest. The liquid is then regurgitated to fellow nestmates. Ectatomma have been observed using the social bucket method of transport and were considered members of the Ponerine family. However, a new phylogeny created by Borowiec and Rabeling places Ectatomma near to Formecinae and Myrmicinae, both know for practicing trophallaxis. This seems to suggest either Ectatomma is able to utilize trophallaxis as well or that the evolutionary practice of trophallaxis is more plastic than previously believed. The ability of Ectatomma ruidum to utilize trophallaxis was examined in two experiments. The first experiment examined E. ruidum’s ability to practice worker to worker trophallaxis and the second examined E. ruidum’s ability to perform worker to larva trophallaxis. The results of both experiments indicated that E. ruidum cannot utilize trophallaxis but the larva of E. ruidum may be able to regurgitate to the workers. These results in turn seem to suggest that trophallaxis is a bit more plastic than originally thought.
ContributorsCunningham, Cassius Alexander (Author) / Pratt, Stephen (Thesis director) / Liebig, Juergen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05