Matching Items (101)
Description
Active sensing is a sensory phenomenon in which organisms use self-generated energy to examine their surroundings. This experiment strives to better understand active sensing in honeybees, predicting that active sensing may display itself primarily through antennae movement and that preventing antennae movement may result in differences in electroantennogram dose-response curves

Active sensing is a sensory phenomenon in which organisms use self-generated energy to examine their surroundings. This experiment strives to better understand active sensing in honeybees, predicting that active sensing may display itself primarily through antennae movement and that preventing antennae movement may result in differences in electroantennogram dose-response curves and associative learning plasticity. This will be done by examining changes in amplitude in electroantennogram response in both fixed-antenna and free-antenna bees over the course of a differential training protocol that establishes learned behavior discrimination.
ContributorsLei, Harry (Author) / Smith, Brian (Thesis director) / Albin-Brooks, Christopher (Committee member) / Barrett, The Honors College (Contributor)
Created2023-05
168609-Thumbnail Image.png
Description
By increasing the mean and variance of environmental temperatures, climate change has caused local extinctions and range shifts of numerous species. However, biologists disagree on which populations and species are most vulnerable to future warming. This debate arises because biologists do not know which physiological processes are most vulnerable to

By increasing the mean and variance of environmental temperatures, climate change has caused local extinctions and range shifts of numerous species. However, biologists disagree on which populations and species are most vulnerable to future warming. This debate arises because biologists do not know which physiological processes are most vulnerable to temperature or how to model these processes in complex environments. Using the South American locust (Schistocerca cancellata) as a model system, my dissertation addressed this debate and explained how climate limits the persistence of locust populations. Locusts of S. cancellata are serious agricultural pests with occasional outbreaks covering up to 4 million km2 over six countries. Because outbreaks are largely driven by climate, understanding how climate limits the persistence of locusts may help predict crop losses in future climates. To achieve this aim, I integrated observational, experimental, and computational approaches. First, I tested a physiological model of heat stress. By measuring the heat tolerance of locusts under different oxygen concentrations, I demonstrated that heat tolerance depends on oxygen supply during the hatchling stage only. Second, I modeled the geographic distribution of locusts using physiological traits. I started by measuring thermal effects on consumption and defecation of field-captured locusts, and I then used these data to model energy gain in current and future climates. My results indicated that incorporating physiological mechanisms can improve the accuracy of models and alter predicted impacts of climate change. Finally, I explored the causes and consequences of intraspecific variation in heat tolerance. After measuring heat tolerance of locusts in different hydration states and developmental stages, I modeled survival in historical microclimates. My models indicated that recent climate change has amplified the risk of overheating for locusts, and this risk depended strongly on shade availability, hydration state, and developmental stage. Therefore, the survival of locusts in future climates will likely depend on their access to shade and water. Overall, my dissertation argues that modeling physiological mechanisms can improve the ability of biologists to predict the impacts of climate change.
ContributorsYoungblood, Jacob (Author) / Angilletta, Michael (Thesis advisor) / Buckley, Lauren (Committee member) / Cease, Arianne (Committee member) / Smith, Brian (Committee member) / Vanden Brooks, John (Committee member) / Arizona State University (Publisher)
Created2022
168492-Thumbnail Image.png
Description
There is an estimated five trillion pieces of plastic in the global ocean, with 4.8 to 12.7 million metric tons entering the ocean annually. Much of the plastic in the ocean is in the form of microplastics, or plastic particles <5mm in size. Microplastics enter the marine environment as primary

There is an estimated five trillion pieces of plastic in the global ocean, with 4.8 to 12.7 million metric tons entering the ocean annually. Much of the plastic in the ocean is in the form of microplastics, or plastic particles <5mm in size. Microplastics enter the marine environment as primary or secondary microplastics; primary microplastics are pre-manufactured micro-sized particles, such as microbeads used in cosmetics, while secondary microplastics form from the degradation of larger plastic objects, such water bottles. Once in the ocean, plastics are readily colonized by a consortium of prokaryotic and eukaryotic organisms, which form dense biofilms on the plastic; this biofilm is termed the “plastisphere”. Despite growing concerns about the ecological impact of microplastics and their respective plastispheres on the marine environment, there is little consensus about the factors that shape the plastisphere on environmentally relevant secondary microplastics. The goal of my dissertation is to comprehensively analyze the role of plastic polymer type, incubation time, and geographic location on shaping plastisphere communities attached to secondary microplastics. I investigated the plastisphere of six chemically distinct plastic polymer types obtained from common household consumer products that were incubated in the coastal Caribbean (Bocas del Toro, Panama) and coastal Pacific (San Diego, CA) oceans. Genotyping using 16S and 18S rRNA gene amplification and next-generation Illumina sequencing was employed to identify bacterial and eukaryotic communities on the polymer surfaces. Statistical analyses show that there were no polymer-specific assemblages for prokaryotes or eukaryotes, but rather a microbial core community that was shared among plastic types. I also found that rare hydrocarbon degrading bacteria may be specific to certain chemical properties of the microplastics. Statistical comparisons of the communities across both sites showed that prokaryotic plastispheres were shaped primarily by incubation time and geographic location. Finally, I assessed the impact of biofilms on microplastic degradation and deposition and conclude that biofilms enhance microplastic sinking of negatively buoyant particles and reduce microplastic degradation. The results of my dissertation increases understanding of the factors that shape the plastisphere and how these communities ultimately determine the fate of microplastics in the marine environment.
ContributorsDudek, Kassandra Lynn (Author) / Neuer, Susanne (Thesis advisor) / Polidoro, Beth (Committee member) / Garcia-Pichel, Ferran (Committee member) / Cao, Huansheng (Committee member) / Arizona State University (Publisher)
Created2021
168497-Thumbnail Image.png
Description
With the development and successful landing of the NASA Perseverance rover, there has been growing interest in identifying how evidence of ancient life may be preserved and recognized in the geologic record. Environments that enable fossilization of biological remains are termed, “taphonomic windows”, wherein signatures of past life may be

With the development and successful landing of the NASA Perseverance rover, there has been growing interest in identifying how evidence of ancient life may be preserved and recognized in the geologic record. Environments that enable fossilization of biological remains are termed, “taphonomic windows”, wherein signatures of past life may be detected. In this dissertation, I have sought to identify taphonomic windows in planetary-analog environments with an eye towards the exploration of Mars. In the first chapter, I describe how evidence of past microbial life may be preserved within serpentinizing systems. Owing to energetic rock-water reactions, these systems are known to host lithotrophic and organotrophic microbial communities. By investigating drill cores from the Samail Ophiolite in Oman, I report morphological and associated chemical biosignatures preserved in these systems as a result of subsurface carbonation. As serpentinites are known to occur on Mars and potentially other planetary bodies, these deposits potentially represent high-priority targets in the exploration for past microbial life. Next, I investigated samples from Atacama Desert, Chile, to understand how evidence of life may be preserved in ancient sediments formed originally in evaporative playa lakes. Here, I describe organic geochemical and morphological evidence of life preserved within sulfate-dominated evaporite rocks from the Jurassic-Cretaceous Tonel Formation and Oligocene San Pedro Formation. Because evaporative lakes are considered to have been potentially widespread on Mars, these deposits may represent additional key targets to search for evidence of past life. In the final chapter, I describe the fossilization potential of surficial carbonates by investigating Crystal Geyser, an active cold spring environment. Here, carbonate minerals precipitate rapidly in the presence of photosynthetic microbial mat communities. I describe how potential biosignatures are initially captured by mineralization, including cell-like structures and microdigitate stromatolites. However, these morphological signatures quickly degrade owing to diagenetic dissolution and recrystallization reactions, as well as textural coarsening that homogenizes the carbonate fabric. Overall, my dissertation underscores the complexity of microbial fossilization and highlights chemically-precipitating environments that may serve as high-priority targets for astrobiological exploration.
ContributorsZaloumis, Jonathan (Author) / Farmer, Jack D (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Trembath-Reichert, Elizabeth (Committee member) / Ruff, Steven W (Committee member) / Shock, Everett L (Committee member) / Arizona State University (Publisher)
Created2021
168323-Thumbnail Image.png
Description
Transorbital surgery has gained recent notoriety due to its incorporation into endoscopic skull base surgery. The body of published literature on the field is cadaveric and observation. The pre-clinical studies are focused on the use of the endoscope only. Furthermore the methodology utilised in the published literature is inconsistent and

Transorbital surgery has gained recent notoriety due to its incorporation into endoscopic skull base surgery. The body of published literature on the field is cadaveric and observation. The pre-clinical studies are focused on the use of the endoscope only. Furthermore the methodology utilised in the published literature is inconsistent and does not embody the optimal principles of scientific experimentation. This body of work evaluates a minimally invasive novel surgical corridor - the transorbital approach - its validity in neurosurgical practice, as well as both qualitatively and quantitatively assessing available technological advances in a robust experimental fashion. While the endoscope is an established means of visualisation used in clinical transorbital surgery, the microscope has never been assessed with respect to the transorbital approach. This question is investigated here and the anatomical and surgical benefits and limitations of microscopic visualisation demonstrated. The comparative studies provide increased knowledge on specifics pertinent to neurosurgeons and other skull base specialists when planning pre-operatively, such as pathology location, involved anatomical structures, instrument maneuvrability and the advantages and disadvantages of the distinct visualisation technologies. This is all with the intention of selecting the most suitable surgical approach and technology, specific to the patient, pathology and anatomy, so as to perform the best surgical procedure. The research findings illustrated in this body of work are diverse, reproducible and applicable. The transorbital surgical corridor has substantive potential for access to the anterior cranial fossa and specific surgical target structures. The neuroquantitative metrics investigated confirm the utility and benefits specific to the respective visualisation technologies i.e. the endoscope and microscope. The most appropriate setting wherein the approach should be used is also discussed. The transorbital corridor has impressive potential, can utilise all available technological advances, promotes multi-disciplinary co-operation and learning amongst clinicians and ultimately, is a means of improving operative patient care.
ContributorsHoulihan, Lena Mary (Author) / Preul, Mark C. (Thesis advisor) / Vernon, Brent (Thesis advisor) / O' Sullivan, Michael G.J. (Committee member) / Lawton, Michael T. (Committee member) / Santarelli, Griffin (Committee member) / Smith, Brian (Committee member) / Arizona State University (Publisher)
Created2021
191036-Thumbnail Image.png
Description
Olfactory perception is a complex and multifaceted process that involves the detection of volatile organic compounds by olfactory receptor neurons in the nasal neuroepithelium. Different odorants can elicit different perceived intensities at the same concentration, while direct intensity ratings are vulnerable to framing effects and inconsistent scale usage. Odor perception

Olfactory perception is a complex and multifaceted process that involves the detection of volatile organic compounds by olfactory receptor neurons in the nasal neuroepithelium. Different odorants can elicit different perceived intensities at the same concentration, while direct intensity ratings are vulnerable to framing effects and inconsistent scale usage. Odor perception is genetically determined, with each individual having a unique olfaction "footprint" and sensitivity levels. Genetic factors, age, gender, race, and environmental factors influence olfactory acuity. The olfactory system's complexity makes it challenging to create a standardized comparison system for olfactory perception tests. The COVID-19 pandemic has underscored the importance of olfactory dysfunction, particularly the loss of smell and taste as common symptoms. Research has demonstrated the widespread occurrence of olfactory impairment in various populations, often stemming from post-viral origins, which is the leading cause of permanent smell loss. Utilizing quantitative ranking on a qualitative scale enhances the precision and accuracy when evaluating and drawing conclusions about odor perception and how to mitigate problems caused by external factors. Pairwise comparisons enhance the accuracy and consistency of results and provide a more intuitive way of comparing items. Such ranking techniques can lead to early detection of olfactory disorders and improved diagnostic tools. The COVID-19 pandemic has shed light on the significance of olfactory dysfunction, emphasizing the need for further research and standardized testing methods in olfactory perception.
ContributorsDarden, Jaelyn (Author) / Smith, Brian (Thesis advisor) / Gerkin, Richard (Thesis advisor) / Spackman, Christy (Committee member) / Arizona State University (Publisher)
Created2023
193603-Thumbnail Image.png
Description
Development of the central nervous system is an incredible process that relies on multiple extracellular signaling cues and complex intracellular interactions. Approximately 1500 genes are associated with neurodevelopmental disorders, many of which are linked to a specific biochemical signaling cascade known as Extracellular-Signal Regulated Kinase (ERK1/2). Clearly defined mutations in

Development of the central nervous system is an incredible process that relies on multiple extracellular signaling cues and complex intracellular interactions. Approximately 1500 genes are associated with neurodevelopmental disorders, many of which are linked to a specific biochemical signaling cascade known as Extracellular-Signal Regulated Kinase (ERK1/2). Clearly defined mutations in regulators of the ERK1/2 pathway cause syndromes known as the RASopathies. Symptoms include intellectual disability, developmental delay, cranio-facial and cardiac deficits. Treatments for RASopathies are limited due to an in complete understanding of ERK1/2’s role in brain development. Individuals with Neurofibromatosis Type and Noonan Syndrome, the two most common RASopathies, exhibit aberrant functional and white matter organization in non-invasive imaging studies, however, the contributions of neuronal versus oligodendrocyte deficits to this phenotype are not fully understood. To define the cellular functions of ERK1/2 in motor circuit formation, this body of work focuses on two long-range projection neuron subtypes defined by their neurotransmitter. With genetic mouse models, pathological ERK1/2 in glutamatergic neurons reduces axonal outgrowth, resulting in deficits in activity dependent gene expression and the ability to learn a motor skill task. Restricting pathological ERK1/2 within cortical layer V recapitulates these wiring deficits but not the behavioral learning phenotype. Moreover, it is uncovered that pathological ERK1/2 results in compartmentalized expression pattern of phosphorylated ERK1/2. It is not clear whether ERK1/2 functions are similar in cholinergic neuron populations that mediate attention, memory, and motor control. Basal forebrain cholinergic neuron development relies heavily on NGF-TrKA neurotrophic signaling known to activate ERK1/2. Yet the function of ERK1/2 during cholinergic neuronal specification and differentiation is poorly understood. By selectively deleting ERK1/2 in cholinergic neurons, ERK1/2 is required for activity-dependent maturation of neuromuscular junctions in juvenile mice, but not the establishment of lower motor neuron number. Moreover, ERK1/2 is not required for specification of choline acetyltransferase expressing basal forebrain cholinergic neurons by 14 days of age. However, ERK1/2 may be necessary for BFCN maturation by adulthood. Collectively, these data indicate that glutamatergic neuron-autonomous decreases in long-range axonal outgrowth and modest effects on later stages of cholinergic neuron maintenance may be important aspects of neuropathogenesis in RASopathies.
ContributorsRees, Katherina Pavy (Author) / Newbern, Jason (Thesis advisor) / Olive, Foster (Committee member) / Qiu, Shenfeng (Committee member) / Sattler, Rita (Committee member) / Smith, Brian (Committee member) / Arizona State University (Publisher)
Created2024
187733-Thumbnail Image.png
Description
The study of organismal adaptations oftentimes focuses on specific, constant conditions, but environmental parameters are characterized by more or less marked levels of variability, rather than constancy. This is important in environments like soils where microbial activity follows pulses of water availability driven by precipitation. Nowhere are these pulses more

The study of organismal adaptations oftentimes focuses on specific, constant conditions, but environmental parameters are characterized by more or less marked levels of variability, rather than constancy. This is important in environments like soils where microbial activity follows pulses of water availability driven by precipitation. Nowhere are these pulses more variable and unpredictable than in arid soils. Pulses constitute stressful conditions for bacteria because they cause direct cellular damage that must be repaired and they force cells to toggle between dormancy and active physiological states, which is energetically taxing. I hypothesize that arid soil microorganisms are adapted to the variability in wet/dry cycles itself, as determined by the frequency and duration of hydration pulses. To test this, I subjected soil microbiomes from the Chihuahuan Desert to controlled incubations for a total common growth period of 60 hours, but separated into treatments in which the total active time was reached with hydration pulses of different length with intervening periods of desiccation, so as to isolate pulse length and frequency as the varying factors in the experiment. Using 16S rRNA amplicon data, I characterized changes in microbiome growth, diversity, and species composition, and tracked the individual responses to treatment intensity in the 447 most common bacterial species (phylotypes) in the soil. Considering knowledge of extremophile microbiology, I hypothesized that growth yield and diversity would decline with shorter pulses. I found that microbial diversity was indeed a direct function of pulse length, but surprisingly, total yield was an inverse function of it. Pulse regime treatments resulted in progressively more significant differences in community composition with increasing pulse length, as differently adapted phylotypes became more prominent. In fact, more than 30% of the most common bacterial phylotypes demonstrated statistically significant population growth responses to pulse length. Most responsive phylotypes were apparently best adapted to short pulse regimes (known in the literature as Nimble Responders or NIRs), while fewer did better under long pulse regimes (known as TORs or Torpid Responders). Examples of extreme NIRs and TORs could be found among bacteria from different phyla, indicating that these adaptations have occurred multiple times during evolution.
ContributorsKut, Patrick John (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Sala, Osvaldo (Committee member) / Zhu, Qiyun (Committee member) / Arizona State University (Publisher)
Created2023
157229-Thumbnail Image.png
Description
Biological soil crusts (biocrusts) are topsoil communities of organisms that contribute to soil fertility and erosion resistance in drylands. Anthropogenic disturbances can quickly damage these communities and their natural recovery can take decades. With the development of accelerated restoration strategies in mind, I studied physiological mechanisms controlling the establishment of

Biological soil crusts (biocrusts) are topsoil communities of organisms that contribute to soil fertility and erosion resistance in drylands. Anthropogenic disturbances can quickly damage these communities and their natural recovery can take decades. With the development of accelerated restoration strategies in mind, I studied physiological mechanisms controlling the establishment of cyanobacteria in biocrusts, since these photoautotrophs are not just the biocrust pioneer organisms, but also largely responsible for improving key soil attributes such as physical stability, nutrient content, water retention and albedo. I started by determining the cyanobacterial community composition of a variety of biocrust types from deserts in the Southwestern US. I then isolated a large number of cyanobacterial strains from these locations, pedigreed them based on their 16SrRNA gene sequences, and selective representatives that matched the most abundant cyanobacterial field populations. I then developed methodologies for large-scale growth of the selected isolates to produce location-specific and genetically autochthonous inoculum for restoration. I also developed and tested viable methodologies to physiologically harden this inoculum and improve its survival under harsh field conditions. My tests proved that in most cases good viability of the inoculum could be attained under field-like conditions. In parallel, I used molecular ecology approaches to show that the biocrust pioneer, Microcoleus vaginatus, shapes its surrounding heterotrophic microbiome, enriching for a compositionally-differentiated “cyanosphere” that concentrates the nitrogen-fixing function. I proposed that a mutualism based on carbon for nitrogen exchange between M. vaginatus and its cyanosphere creates a consortium that constitutes the true pioneer community enabling the colonization of nitrogen-poor, bare soils. Using the right mixture of photosynthetic and diazotrophic cultures will thus likely help in soil restoration. Additionally, using physiological assays and molecular meta-analyses, I demonstrated that the largest contributors to N2-fixation in late successional biocrusts (three genera of heterocystous cyanobacteria) partition their niche along temperature gradients, and that this can explain their geographic patterns of dominance within biocrusts worldwide. This finding can improve restoration strategies by incorporating climate-matched physiological types in inoculum formulations. In all, this dissertation resulted in the establishment of a comprehensive "cyanobacterial biocrust nursery", that includes a culture collection containing 101 strains, isolation and cultivation methods, inoculum design strategies as well as field conditioning protocols. It constitutes a new interdisciplinary application of microbiology in restoration ecology.
ContributorsGiraldo Silva, Ana Maria (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Barger, Nichole N (Committee member) / Bowker, Mathew A (Committee member) / Sala, Osvaldo (Committee member) / Arizona State University (Publisher)
Created2019
156939-Thumbnail Image.png
Description
The RASopathies are a collection of developmental diseases caused by germline mutations in components of the RAS/MAPK signaling pathway and is one of the world’s most common set of genetic diseases. A majority of these mutations result in an upregulation of RAS/MAPK signaling and cause a variety of both physical

The RASopathies are a collection of developmental diseases caused by germline mutations in components of the RAS/MAPK signaling pathway and is one of the world’s most common set of genetic diseases. A majority of these mutations result in an upregulation of RAS/MAPK signaling and cause a variety of both physical and neurological symptoms. Neurodevelopmental symptoms of the RASopathies include cognitive and motor delays, learning and intellectual disabilities, and various behavioral problems. Recent noninvasive imaging studies have detected widespread abnormalities within white matter tracts in the brains of RASopathy patients. These abnormalities are believed to be indicative of underlying connectivity deficits and a possible source of the behavioral and cognitive deficits. To evaluate these long-range connectivity and behavioral issues in a cell-autonomous manner, MEK1 loss- and gain-of-function (LoF and GoF) mutations were induced solely in the cortical glutamatergic neurons using a Nex:Cre mouse model. Layer autonomous effects of the cortex were also tested in the GoF mouse using a layer 5 specific Rbp4:Cre mouse. Immunohistochemical analysis showed that activated ERK1/2 (P-ERK1/2) was expressed in high levels in the axonal compartments and reduced levels in the soma when compared to control mice. Axonal tract tracing using a lipophilic dye and an adeno-associated viral (AAV) tract tracing vector, identified significant corticospinal tract (CST) elongation deficits in the LoF and GoF Nex:Cre mouse and in the GoF Rbp4:Cre mouse. AAV tract tracing was further used to identify significant deficits in axonal innervation of the contralateral cortex, the dorsal striatum, and the hind brain of the Nex:Cre GoF mouse and the contralateral cortex and dorsal striatum of the Rbp4:Cre mouse. Behavioral testing of the Nex:Cre GoF mouse indicated deficits in motor learning acquisition while the Rbp4:Cre GoF mouse showed no failure to acquire motor skills as tested. Analysis of the expression levels of the immediate early gene ARC in Nex:Cre and Rbp4:Cre mice showed a specific reduction in a cell- and layer-autonomous manner. These findings suggest that hyperactivation of the RAS/MAPK pathway in cortical glutamatergic neurons, induces changes to the expression patterns of P-ERK1/2, disrupts axonal elongation and innervation patterns, and disrupts motor learning abilities.
ContributorsBjorklund, George Reed (Author) / Newbern, Jason M (Thesis advisor) / Neisewander, Janet (Committee member) / Smith, Brian (Committee member) / Orchinik, Miles (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2018