Matching Items (128)
128448-Thumbnail Image.png
Description

A 3.19-Mbp draft genome of the Gram-positive thermophilic iron-reducing Firmicutes isolate from the Peptococcaceae family, Thermincola ferriacetica Z-0001, was assembled at ~100× coverage from 100-bp paired-end Illumina reads. The draft genome contains 3,274 predicted genes (3,187 protein coding genes) and putative multiheme c-type cytochromes.

ContributorsLusk, Bradley (Author) / Badalamenti, Jonathan P. (Author) / Parameswaran, Prathap (Author) / Bond, Daniel R. (Author) / Torres, Cesar (Author) / Biodesign Institute (Contributor)
Created2015-09-24
128452-Thumbnail Image.png
Description

Mastigocoleus testarum strain BC008 is a model organism used to study marine photoautotrophic carbonate dissolution. It is a multicellular, filamentous, diazotrophic, euendolithic cyanobacterium ubiquitously found in marine benthic environments. We present an accurate draft genome assembly of 172 contigs spanning 12,700,239 bp with 9,131 annotated genes with an average G+C%

Mastigocoleus testarum strain BC008 is a model organism used to study marine photoautotrophic carbonate dissolution. It is a multicellular, filamentous, diazotrophic, euendolithic cyanobacterium ubiquitously found in marine benthic environments. We present an accurate draft genome assembly of 172 contigs spanning 12,700,239 bp with 9,131 annotated genes with an average G+C% of 37.3.

ContributorsGuida, Brandon (Author) / Garcia-Pichel, Ferran (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-01-28
129594-Thumbnail Image.png
Description

Our species exhibits spectacular success due to cumulative culture. While cognitive evolution of social learning mechanisms may be partially responsible for adaptive human culture, features of early human social structure may also play a role by increasing the number potential models from which to learn innovations. We present interview data

Our species exhibits spectacular success due to cumulative culture. While cognitive evolution of social learning mechanisms may be partially responsible for adaptive human culture, features of early human social structure may also play a role by increasing the number potential models from which to learn innovations. We present interview data on interactions between same-sex adult dyads of Ache and Hadza hunter-gatherers living in multiple distinct residential bands (20 Ache bands; 42 Hadza bands; 1201 dyads) throughout a tribal home range. Results show high probabilities (5%–29% per year) of cultural and cooperative interactions between randomly chosen adults. Multiple regression suggests that ritual relationships increase interaction rates more than kinship, and that affinal kin interact more often than dyads with no relationship. These may be important features of human sociality. Finally, yearly interaction rates along with survival data allow us to estimate expected lifetime partners for a variety of social activities, and compare those to chimpanzees. Hadza and Ache men are estimated to observe over 300 men making tools in a lifetime, whereas male chimpanzees interact with only about 20 other males in a lifetime. High intergroup interaction rates in ancestral humans may have promoted the evolution of cumulative culture.

ContributorsHill, Kim (Author) / Wood, Brian M. (Author) / Baggio, Jacopo (Author) / Hurtado, Ana (Author) / Boyd, Robert (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-07-21
156809-Thumbnail Image.png
Description
Carbon dioxide (CO2) levels in the atmosphere have reached unprecedented levels due to increasing anthropogenic emissions and increasing energy demand. CO2 capture and utilization can aid in stabilizing atmospheric CO2 levels and producing carbon-neutral fuels. Utilizing hollow fiber membranes (HFMs) for microalgal cultivation accomplishes that via bubbleless gas-transfer,

Carbon dioxide (CO2) levels in the atmosphere have reached unprecedented levels due to increasing anthropogenic emissions and increasing energy demand. CO2 capture and utilization can aid in stabilizing atmospheric CO2 levels and producing carbon-neutral fuels. Utilizing hollow fiber membranes (HFMs) for microalgal cultivation accomplishes that via bubbleless gas-transfer, preventing CO2 loss to the atmosphere. Various lengths and geometries of HFMs were used to deliver CO2 to a sodium carbonate solution. A model was developed to calculate CO2 flux, mass-transfer coefficient (KL), and volumetric mass-transfer coefficient (KLa) based on carbonate equilibrium and the alkalinity of the solution. The model was also applied to a sparging system, whose performance was compared with that of the HFMs. Typically, HFMs are operated in closed-end mode or open-end mode. The former is characterized by a high transfer efficiency, while the latter provides the advantage of a high transfer rate. HFMs were evaluated for both modes of operation and a varying inlet CO2 concentration to determine the effect of inert gas and water vapor accumulation on transfer rates. For pure CO2, a closed-end module operated as efficiently as an open-end module. Closed-end modules perform significantly worse when CO2-enriched air was supplied. This was shown by the KLa values calculated using the model. Finally, a mass-balance model was constructed for the lumen of the membranes in order to provide insight into the gas-concentration profiles inside the fiber lumen. For dilute CO2 inlet streams, accumulation of inert gases -- nitrogen (N2), oxygen (O2), and water vapor (H2O) -- significantly affected module performance by reducing the average CO2 partial pressure in the membrane and diminishing the amount of interfacial mass-transfer area available for CO2 transfer.
ContributorsShesh, Tarun (Author) / Rittmann, Bruce E. (Thesis advisor) / Green, Matthew (Committee member) / Torres, Cesar (Committee member) / Arizona State University (Publisher)
Created2018
128211-Thumbnail Image.png
Description

We described the rapid production of the domain III (DIII) of the envelope (E) protein in plants as a vaccine candidate for West Nile Virus (WNV). Using various combinations of vector modules of a deconstructed viral vector expression system, DIII was produced in three subcellular compartments in leaves of Nicotiana

We described the rapid production of the domain III (DIII) of the envelope (E) protein in plants as a vaccine candidate for West Nile Virus (WNV). Using various combinations of vector modules of a deconstructed viral vector expression system, DIII was produced in three subcellular compartments in leaves of Nicotiana benthamiana by transient expression. DIII expressed at much higher levels when targeted to the endoplasmic reticulum (ER) than that targeted to the chloroplast or the cytosol, with accumulation level up to 73 μg DIII per gram of leaf fresh weight within 4 days after infiltration. Plant ER-derived DIII was soluble and readily purified to > 95% homogeneity without the time-consuming process of denaturing and refolding. Further analysis revealed that plant-produced DIII was processed properly and demonstrated specific binding to an anti-DIII monoclonal antibody that recognizes a conformational epitope. Furthermore, subcutaneous immunization of mice with 5 and 25 μg of purified DIII elicited a potent systemic response. This study provided the proof of principle for rapidly producing immunogenic vaccine candidates against WNV in plants with low cost and scalability.

ContributorsHe, Junyun (Author) / Peng, Li (Author) / Lai, Huafang (Author) / Hurtado, Jonathan (Author) / Stahnke, Jake (Author) / Chen, Qiang (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2014-04-03
128212-Thumbnail Image.png
Description

The increasing world demand for human biologics cannot be met by current production platforms based primarily on mammalian cell culture due to prohibitive cost and limited scalability [1]. Recent progress in plant expression vector development, downstream processing, and glycoengineering has established plants as a superior alternative to biologic production [2–4].

The increasing world demand for human biologics cannot be met by current production platforms based primarily on mammalian cell culture due to prohibitive cost and limited scalability [1]. Recent progress in plant expression vector development, downstream processing, and glycoengineering has established plants as a superior alternative to biologic production [2–4]. Plants not only offer the traditional advantages of proper eukaryotic protein modification, potential low cost, high scalability, and increased safety but also allow the production of biologics at unprecedented speed to control potential pandemics or with specific glycoforms for better efficacy or safety (biobetters) [5, 6]. The approval of the first plant-made biologic (PMB) by the United States Food and Drug Administration (FDA) for treating Gaucher’s disease heralds a new era for PMBs and sparks new innovations in this field [7, 8].

ContributorsChen, Qiang (Author) / Santi, Luca (Author) / Zhang, Chenming (Author) / Biodesign Institute (Contributor)
Created2014-06-02
131037-Thumbnail Image.png
Description
Biofuels are a carbon-neutral energy source proving to be a sustainable alternative to greenhouse gas-emitting fossil fuels that are accelerating the detrimental effects of anthropogenic climate change. A developing system aimed at more efficiently producing biofuels is called Microbial Electro-Photosynthesis (MEPS). In MEPS, a Synechocystis sp. PCC 6803 mutant lacking

Biofuels are a carbon-neutral energy source proving to be a sustainable alternative to greenhouse gas-emitting fossil fuels that are accelerating the detrimental effects of anthropogenic climate change. A developing system aimed at more efficiently producing biofuels is called Microbial Electro-Photosynthesis (MEPS). In MEPS, a Synechocystis sp. PCC 6803 mutant lacking photosystem II (PSII) receives electrons by a hydroduroquinone (DQH2) mediator from a more efficient water-splitting electrochemical cell, rather than splitting water itself using PSII. However, growth of the Synechocystis cells prior to use in MEPS requires an organic carbon source, leading to internally-stored electron sources, namely glycogen, that compete with preferred DQH2 mediator-delivered electrons. In this study, the effects of organic carbon source (pyruvate, acetate, glucose, and no carbon source) and light condition (light or dark) on the physiology and P700+ reduction kinetics of photoheterotrophically grown Synechocystis mutants were studied with the hope of identifying a maintenance culturing method that allowed for both cell viability and mitigated glycogen storage. While no significant decreases in internal electron-sources were found with these methods, it was observed that Synechocystis cells fed pyruvate in the light had most successfully reduced competition between internal electron sources and preferred DQH2-delivered electrons. This study suggests that these experiments be re-run after removing exogenous carbon sources and that the nutrients available to the cells and their effects on pyruvate and acetate uptake be further investigated.
ContributorsMangus, Anna Michelle (Author) / Torres, Cesar (Thesis director) / Lewis, Christine (Committee member) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
133440-Thumbnail Image.png
Description
Agrobacterium tumefaciens has the ability to transfer its tumor inducing (Ti) plasmid into plant cells. In the last decade, agroinfiltration of Nicotiana benthamiana plants has shown promising results for recombinant protein production. However, A. tumefaciens produce endotoxins in the form of lipopolysaccharides (LPS), a component of their outer membrane that

Agrobacterium tumefaciens has the ability to transfer its tumor inducing (Ti) plasmid into plant cells. In the last decade, agroinfiltration of Nicotiana benthamiana plants has shown promising results for recombinant protein production. However, A. tumefaciens produce endotoxins in the form of lipopolysaccharides (LPS), a component of their outer membrane that can induce organ failure and septic shock. Therefore, we aimed to detoxify A. tumefaciens by modifying their Lipid A structure, the toxic region of LPS, via mutating the genes for lipid A biosynthesis. Two mutant strains of A. tumefaciens were infiltrated into N. benthamiana stems to test for tumor formation to ensure that the detoxifying process did not compromise the ability of gene transfer. Our results demonstrated that A. tumefaciens with both single and double mutations retained the ability to form tumors. Thus, these mutants can be utilized to generate engineered A. tumefaciens strains for the production of plant-based pharmaceuticals with low endotoxicity.
ContributorsHaseefa, Fathima (Author) / Chen, Qiang (Thesis director) / Mason, Hugh (Committee member) / Hurtado, Jonathan (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05