Matching Items (2)
Filtering by

Clear all filters

131572-Thumbnail Image.png
Description
In the world we live in today, nothing is impossible. Due to the advancements of technology, humans around the globe are able to hold computers that fit within the size of their pocket. These computers can do marvelous things, however run off batteries. These batteries need to be charged

In the world we live in today, nothing is impossible. Due to the advancements of technology, humans around the globe are able to hold computers that fit within the size of their pocket. These computers can do marvelous things, however run off batteries. These batteries need to be charged and up until a little while ago there was only one option available: wired chargers; however, because of the advancement of technology society has created a way to transfer power via magnetic fields. Now this concept has been around for a long time since the days of Nikola Tesla but just recently society has been able to apply his discoveries to charging these computers in our pockets. Unfortunately, the current models of these chargers come with a drawback as they are less efficient than wired chargers. However, this is the question our group has set out to answer. Is there any way possible to improve the efficiency of these wireless chargers so they are equal or even more efficient than wired chargers. This paper explores how to improve the efficiency in wireless chargers. Through research, simulations and testing the group has discovered areas that efficiency can be improved as well as makes recommendations to change the current wireless chargers on the market today. This paper also explores future applications of wireless chargers that can not only make life much easier but could also save lives in some cases. These applications can have many effects on hospitality, the medical field, as well as the supply chain and logistics of America.
ContributorsMcCulley, Matthew Alan (Co-author) / Cole, Kennedy (Co-author) / Chickamenahalli, Shamala (Thesis director) / Chakrabarti, Chaitali (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
165107-Thumbnail Image.png
Description

The stability of cheerleading stunts is crucial to athlete safety and team success. Consistency in stunt technique contributes to success in stunting skills, giving a team the tools to win competitions. Increased stunt technique reduces the chances of falls and the severity of those falls. Proper technique also prevents injuries

The stability of cheerleading stunts is crucial to athlete safety and team success. Consistency in stunt technique contributes to success in stunting skills, giving a team the tools to win competitions. Increased stunt technique reduces the chances of falls and the severity of those falls. Proper technique also prevents injuries caused by improper positions that place pressure on the lower back and shoulders. Bases must maintain strong technique with proper lines of support in order to maximize stunt stability. Through exploration of the EmbeddedML system, involving a neural network implemented using a SensorTile, cheerleading motions can be successfully classified. Using this system, it is possible to identify motions that result in both weak and injurious positions almost instantly. By alerting athletes to these incorrect motions, improper stunt technique can be corrected quickly and without the involvement of a coach. This automated technique correction would be incredibly beneficial to the sport of competitive cheerleading

ContributorsOspina, Lauren (Author) / Wang, Chao (Thesis director) / Chakrabarti, Chaitali (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-05