Matching Items (5,868)
Filtering by

Clear all filters

152586-Thumbnail Image.png
Description
The computation of the fundamental mode in structural moment frames provides valuable insight into the physical response of the frame to dynamic or time-varying loads. In standard practice, it is not necessary to solve for all n mode shapes in a structural system; it is therefore practical to limit the

The computation of the fundamental mode in structural moment frames provides valuable insight into the physical response of the frame to dynamic or time-varying loads. In standard practice, it is not necessary to solve for all n mode shapes in a structural system; it is therefore practical to limit the system to some determined number of r significant mode shapes. Current building codes, such as the American Society of Civil Engineers (ASCE), require certain class of structures to obtain 90% effective mass participation as a way to estimate the accuracy of a solution for base shear motion. A parametric study was performed from the collected data obtained by the analysis of a large number of framed structures. The purpose of this study was the development of rules for the required number of r significant modes to meet the ASCE code requirements. The study was based on the implementation of an algorithm and a computer program developed in the past. The algorithm is based on Householders Transformations, QR Factorization, and Inverse Iteration and it extracts a requested s (s<< n) number of predominate mode shapes and periods. Only the first r (r < s) of these modes are accurate. To verify the accuracy of the algorithm a variety of building frames have been analyzed using the commercially available structural software (RISA 3D) as a benchmark. The salient features of the algorithm are presented briefly in this study.
ContributorsGrantham, Jonathan (Author) / Fafitis, Apostolos (Thesis advisor) / Attard, Thomas (Committee member) / Houston, Sandra (Committee member) / Hjelmstad, Keith (Committee member) / Arizona State University (Publisher)
Created2014
153430-Thumbnail Image.png
Description
In this thesis, the author described a new genetic algorithm based on the idea: the better design could be found at the neighbor of the current best design. The details of the new genetic algorithm are described, including the rebuilding process from Micro-genetic algorithm and the different crossover and mutation

In this thesis, the author described a new genetic algorithm based on the idea: the better design could be found at the neighbor of the current best design. The details of the new genetic algorithm are described, including the rebuilding process from Micro-genetic algorithm and the different crossover and mutation formation.

Some popular examples, including two variable function optimization and simple truss models are used to test this algorithm. In these study, the new genetic algorithm is proved able to find the optimized results like other algorithms.

Besides, the author also tried to build one more complex truss model. After tests, the new genetic algorithm can produce a good and reasonable optimized result. Form the results, the rebuilding, crossover and mutation can the jobs as designed.

At last, the author also discussed two possible points to improve this new genetic algorithm: the population size and the algorithm flexibility. The simple result of 2D finite element optimization showed that the effectiveness could be better, with the improvement of these two points.
ContributorsDing, Xiaosu (Author) / Hjelmstad, Keith (Thesis advisor) / Neithalath, Narayanan (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2015
131519-Thumbnail Image.png
Description
As a student and then an Undergraduate Teaching Assistant (UGTA), I have had the opportunity to personally witness the learning process of both myself and approximately 75 additional incoming Civil Engineering students taking the Mechanics courses after me. While watching the student learning process as an UGTA, I realized that

As a student and then an Undergraduate Teaching Assistant (UGTA), I have had the opportunity to personally witness the learning process of both myself and approximately 75 additional incoming Civil Engineering students taking the Mechanics courses after me. While watching the student learning process as an UGTA, I realized that there were consistent points of confusion amongst the students that the teaching staff could not efficiently communicate with the electronic or physical classroom materials available. As a physical learner, I am able to learn more comprehensively if I have a physical model to manipulate, and often found myself in the position of wanting to be able to physically represent and manipulate the systems being studied in class.
ContributorsCamillucci, Allyson Nicole (Co-author, Co-author) / Hjelmstad, Keith (Thesis director) / Chatziefstratiou, Efthalia (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133958-Thumbnail Image.png
Description
The 8.1 magnitude earthquake that struck Mexico City in 1985 left 10,000 people dead, and over 400 buildings collapsed. The extent of the damage left behind by this powerful quake has been extensively studied to make improvements to engineering and architectural practices in earthquake-prone areas of the world. Thirty-two years

The 8.1 magnitude earthquake that struck Mexico City in 1985 left 10,000 people dead, and over 400 buildings collapsed. The extent of the damage left behind by this powerful quake has been extensively studied to make improvements to engineering and architectural practices in earthquake-prone areas of the world. Thirty-two years later, on the exact anniversary of the devastating earthquake, Mexico City was once again jolted by a 7.1 magnitude earthquake. Although still significant, the 2017 earthquake collapsed only about a tenth of the buildings collapsed by the 1985 Earthquake, and in turn resulted in a lower death toll. Even though these earthquakes struck in the same seismic region, their effects were vastly different. This thesis completes a comparison between the two earthquakes focusing on the structural impacts including background on Mexico City's unique geology, basic concepts necessary to understand the response of structures to earthquake excitation, and structural failure modes observed in both earthquakes. The thesis will also discuss the earthquake's fundamental differences that led to the discrepancy in structural damage and ultimately in lower death tolls. Of those discussed, is the types of buildings that were targeted and collapsed. In 1985, buildings with 6 or more floors had the highest damage category. Resonance frequencies of these buildings were similar to the resonance frequencies of the subsoil, leading to amplified oscillations, and ultimately in failure. The 2017 earthquake did not have as much distance from the epicenter for the high frequency seismic waves to be absorbed. In contrast, the shorter, faster waves that reached the capital affected smaller buildings, and spared most tall buildings.
ContributorsGonzalez, Diana Laura (Author) / Hjelmstad, Keith (Thesis director) / Ward, Kristen (Committee member) / Civil, Environmental and Sustainable Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
In the Spring 2013 and Fall 2013 semesters, a survey was taken of students enrolled in the principal undergraduate civil engineering structures course, CEE 321: Structural Analysis and Design, to assess both the prevalence of technology in the lives of the students and the potential ways this information could be

In the Spring 2013 and Fall 2013 semesters, a survey was taken of students enrolled in the principal undergraduate civil engineering structures course, CEE 321: Structural Analysis and Design, to assess both the prevalence of technology in the lives of the students and the potential ways this information could be use to improve the educational experience. The results of this survey indicated that there was a considerable demand for additional online resources outside of the formal classroom. The students of CEE 321 requested online lecture videos in particular, and so a project was launched at the start of the Spring 2014 semester to deliver a large body of academic instructional videos. In total, a collection of 30 instructional videos which covered all key topics covered over a semester of CEE 321 was published. The driving interest behind this creative project is to increase the level of understanding, comfort, and performance in students enrolled in the class. Although the quantity of initial student feedback is relatively small, the reactions are distinctly positive and reflect an improvement in understanding amongst the responding students. Over the course of upcoming semesters, qualitative and quantitative assessments of the impact of the videos are expected to provide a better indication of their quality and effectiveness in supporting student comprehension and performance in CEE 321. Above all, the success of these videos is directly tied to their ability to function as living, adaptable resources which are continuously molded and improved by student feedback.
ContributorsReasor, Drew Donn (Author) / Rajan, Subramaniam (Thesis director) / Hjelmstad, Keith (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2014-05
134402-Thumbnail Image.png
Description
The School of Sustainable Engineering and the Built Environment (SSEBE) used to have a shake table where FSE 100 professors would use students' model structures to demonstrate how failure occurs during an earthquake. The SSEBE has wanted to build a shake table ever since the original table was no longer

The School of Sustainable Engineering and the Built Environment (SSEBE) used to have a shake table where FSE 100 professors would use students' model structures to demonstrate how failure occurs during an earthquake. The SSEBE has wanted to build a shake table ever since the original table was no longer available to them. My creative project is to design and build a shake table for FSE 100 use. This paper will go through the steps I took to design and construct my shake table as well as suggestions to anyone else who would want to build a shake table. The design of the shake table that was constructed was modeled after Quanser's Shake Table II. The pieces from the shake table were purchased from McMaster-Carr and was assembled at the TechShop in Chandler, Arizona. An educational component was added to this project to go along with the shake table. The project will be for the use of a FSE 100 classes. This project is very similar to the American Society of Civil Engineers, Pacific Southwest Conference's seismic competition. The main difference is that FSE 100 students will not be making a thirty story model but only a five story model. This shake table will make Arizona State University's engineering program competitive with other top universities that use and implement shake table analysis in their civil engineering courses.
ContributorsLockhart, Laura E. (Author) / Ward, Kristen (Thesis director) / Hjelmstad, Keith (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134754-Thumbnail Image.png
Description
The Barrett creative project in residential structural design serves as the culmination of my most meaningful undergraduate experiences and interests. I previously interned for D.R. Horton, a home builder, and spent a significant amount of time on the development sites and in the engineering management office. This experience sparked a

The Barrett creative project in residential structural design serves as the culmination of my most meaningful undergraduate experiences and interests. I previously interned for D.R. Horton, a home builder, and spent a significant amount of time on the development sites and in the engineering management office. This experience sparked a curiosity in the design of wood frames for homes and the residential industry as a whole. Since then, I have also had the opportunity to intern for Felten Group, an architecture, engineering, and forensics firm specializing in residential work. A residential roof structure is designed following the American Society of Civil Engineer's Minimum Design Loads for Buildings and Other Structures design code, in addition to the National Design Standards for Wood Construction manual. Although the sub discipline of wooden structural design can often be disregarded as the simplest type of analysis, I believe that it is a key component of an education in structural engineering. Like all aspects of civil engineering, the design of a house is composed of many interconnected systems, which include the balance of structural integrity and cost, functionality and aesthetics, and light and space. For my creative project, I took these ideas into account when designing both the floor plan and roof structure of the house using Revit and RISA, respectively. Well-rounded engineers are not only technically competent, but they also understand the social dimensions of a problem and how all the systems work together. The project focuses on creating a cohesive representation of a structure as a whole and how the individual frames, trusses, and beams interact with one another using RISA, a structural analysis program. With RISA's 3D interface, I have a better understanding of how more complex structures behave, which I have not gained from my 2D perspective in classes. RISA is used to calculate support reactions and the deflections of the trusses, which are checked against the bearing capacities of the supports and deflection design criteria to ensure a safe design. Concepts such as tributary area, truss connections, and the behavior of girder systems are also explored through the process.
Created2016-12
132915-Thumbnail Image.png
Description
With a rapidly decreasing amount of resources for construction, wood and bamboo have been suggested as renewable materials for increased use in the future to attain sustainability. Through a literature review, bamboo and wood growth, manufacturing and structural attributes were compared and then scored in a weighted matrix to determine

With a rapidly decreasing amount of resources for construction, wood and bamboo have been suggested as renewable materials for increased use in the future to attain sustainability. Through a literature review, bamboo and wood growth, manufacturing and structural attributes were compared and then scored in a weighted matrix to determine the option that shows the higher rate of sustainability. In regards to the growth phase, which includes water usage, land usage, growth time, bamboo and wood showed similar characteristics overall, with wood scoring 1.11% higher than bamboo. Manufacturing, which captures the extraction and milling processes, is experiencing use of wood at levels four times those of bamboo, as bamboo production has not reached the efficiency of wood within the United States. Structural use proved to display bamboo’s power, as it scored 30% higher than wood. Overall, bamboo received a score 15% greater than that of wood, identifying this fast growing plant as the comparatively more sustainable construction material.
ContributorsThies, Jett Martin (Author) / Ward, Kristen (Thesis director) / Halden, Rolf (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133978-Thumbnail Image.png
Description
Arizona's transportation infrastructure is in need of an update. The American Society of Civil Engineers (ASCE) State Infrastructure 2017 Report Card scores Arizona's roads at a D+ and Arizona's bridges at a B. These grades are indicative that the serviceability levels of the roads and bridges are less than adequate.

Arizona's transportation infrastructure is in need of an update. The American Society of Civil Engineers (ASCE) State Infrastructure 2017 Report Card scores Arizona's roads at a D+ and Arizona's bridges at a B. These grades are indicative that the serviceability levels of the roads and bridges are less than adequate. These grades may seem tolerable in light of a national bridge C+ grade and a national road D grade, but the real problem lies in Arizona's existing funding gap that is in danger of exponentially increasing in the future. With an influx of vehicles on Arizona's roads and bridges, the cost of building, repairing, and maintaining them will grow and cause a problematic funding shortage. This report explores the current state of Arizona's roads and bridges as well as the policy and funding sources behind them, using statistics from the ASCE infrastructure report card and the Federal Highway Administration. Additionally, it discusses how regular, preventative maintenance for transportation infrastructure is the economically responsible choice for the state because it decreases delays and fuel expenses, prevents possible catastrophes, and increases human safety. To prioritize preventative transportation infrastructure maintenance, the common mentality that allows it to be sidelined for more newsworthy projects needs to be changed. Along with gaining preventative maintenance revenues through increasing vehicular taxes and fees, encouraging transportation policymakers and politicians to make economic decisions in favor of maintenance rather than waiting until failure is a reliable way to encourage regular, preventative maintenance.
ContributorsBurdett, Courtney (Author) / Hjelmstad, Keith (Thesis director) / Pendyala, Ram (Committee member) / Civil, Environmental and Sustainable Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
This paper introduces an excel tool created to improve the accuracy of electrical subcontracting prices for solar photovoltaic energy systems while also minimizing the time needed to create these price estimations. The need for improved precision, specifically during the early stages of a project, is examined and the paper also

This paper introduces an excel tool created to improve the accuracy of electrical subcontracting prices for solar photovoltaic energy systems while also minimizing the time needed to create these price estimations. The need for improved precision, specifically during the early stages of a project, is examined and the paper also goes into detail about the components and pricing method that are incorporated into the excel tool. Lastly, the results of the price estimation tool are compared to real bids and recommendations are made for improvement to the tool.
ContributorsJohnson, Eric Allen (Author) / Fraser, Matthew (Thesis director) / Hjelmstad, Keith (Committee member) / Hughes, Jeff (Committee member) / Civil, Environmental and Sustainable Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05