Matching Items (69)
148422-Thumbnail Image.png
Description

This project will be a tribute to my experiences as a person, a chef, and as an ASU student. During my time spent here at ASU I have met a diverse group of people that I call my friends. Every time we would spend time together, I would learn about

This project will be a tribute to my experiences as a person, a chef, and as an ASU student. During my time spent here at ASU I have met a diverse group of people that I call my friends. Every time we would spend time together, I would learn about their lives and the experiences they are going through at this university. Everyone I met had a different background, story, and experience. Some of these memorable nights would be spent at my place. Depending on the circumstance, I would cook for my friends, and every time I did, they were amazed by my craft. Growing up, my mother was always working in the realm of fundraising. Through her jobs, we both had the opportunity to meet and work with some of the best chefs the Phoenix valley had to offer. Chefs like Robert Irvine, Mario Batali, Beau MacMillan, Christopher Gross, Michael DiMaria, Eddie Matney, and more. As a child and teenager, my fascination with cooking and food stood out to these figures and many taught me various skills and techniques in the kitchen. I learned to do everything from properly julian tangerines to preparing beef tartar. I even developed from making lemonade on my own when I was two years old to working in a four star restaurant as a line chef at the age of 15. These memories I will be forever grateful for. Through these skills, I have impressed my friends with delicious meals at night. And as we matured through college both in age and living situations, many of my friends have asked to learn from me. The change from freshman dorms to our own houses and townhomes have offered an endless opportunity of options for meals. But, everyone has a different background and skill set when it comes to cooking. A few of my friends have never picked up a knife before and have claimed to “burn water in the microwave.” Others tend to challenge me in preparing meals in their own homes and together we have our own “cookoffs.” From person to person, and living quarter to living quarter, there are many challenges to cooking. This is why I have decided to take the knowledge from my Industrial Engineering classes, my personal cooking skills, and data collected from the student body to create a cookbook for the average ASU student. I plan to include recipes and techniques in the form of Standard Operating Procedures to ensure that the instructions are as easy to follow as they can be. The recipes and techniques I plan to include will encompass data I have collected from the student body. The data will focus around a few key components of any chef and kitchen: tools and appliances available, personal cooking skills, and personal cooking experience. To take on such a challenge, I plan to complete this thesis/creative project in a few direct steps. First and foremost, complete this prospectus (already completed), next, secure funding from ASU for a survey completion incentive. For this survey, I will need a minimum of $250 to distribute between 5 winners. The monetary incentive is to ensure that more than 30 pieces of data (survey responses) are collected from each grade level of students. Next I will send a survey that asks about the aforementioned topics. After the survey is complete, I will collect the data, analyze it, and hone in on the most important and available tools. Finally, I will write stories surrounding my chosen recipes and create said recipes.

Created2021-05
Description

The academic environment has historically been somewhat slow to implement and adopt new technologies. However, developments in video games have created an opportunity for students to learn new skills and topics through nontraditional mediums of education. The disruption caused by the COVID-19 pandemic further highlighted the need for flexible learning

The academic environment has historically been somewhat slow to implement and adopt new technologies. However, developments in video games have created an opportunity for students to learn new skills and topics through nontraditional mediums of education. The disruption caused by the COVID-19 pandemic further highlighted the need for flexible learning opportunities. Joystick Education is our approach to addressing this need. Through online, game-based tutoring and a database of video games with high educational value, Joystick Education creates a learning environment that is effective, fun, and engaging for students. We analyzed popular, mainstream video games for educational content and selected nine games that teach concepts like history, biology, or physics while playing the game. Through promotion on social media, we generated buzz around our website which led to 103 unique visitors over our first month online and two customers requesting to book our tutoring service. We are confident that given more time to grow, Joystick Education can generate profit and become a successful business.

ContributorsVanlue, Aleczander Bryce (Co-author) / Bartels, Parker (Co-author) / Barrong, Tanner (Co-author) / Byrne, Jared (Thesis director) / Pierce, John (Committee member) / Department of Marketing (Contributor) / Department of Management and Entrepreneurship (Contributor, Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148169-Thumbnail Image.png
Description

This thesis was conducted to study and analyze the fund allocation process adopted by different states in the United States to reduce the impact of the Covid-19 virus. Seven different states and their funding methodologies were compared against the case count within the state. The study also focused on development

This thesis was conducted to study and analyze the fund allocation process adopted by different states in the United States to reduce the impact of the Covid-19 virus. Seven different states and their funding methodologies were compared against the case count within the state. The study also focused on development of a physical distancing index based on three significant attributes. This index was then compared to the expenditure and case counts to support decision making.
A regression model was developed to analyze and compare how different states case counts played out against the regression model and the risk index.

ContributorsJaisinghani, Shaurya (Author) / Mirchandani, Pitu (Thesis director) / Clough, Michael (Committee member) / McCarville, Daniel R. (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Department of Information Systems (Contributor) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148263-Thumbnail Image.png
Description

Time studies are an effective tool to analyze current production systems and propose improvements. The problem that motivated the project was that conducting time studies and observing the progression of components across the factory floor is a manual process. Four Industrial Engineering students worked with a manufacturing company to develo

Time studies are an effective tool to analyze current production systems and propose improvements. The problem that motivated the project was that conducting time studies and observing the progression of components across the factory floor is a manual process. Four Industrial Engineering students worked with a manufacturing company to develop Computer Vision technology that would automate the data collection process for time studies. The team worked in an Agile environment to complete over 120 classification sets, create 8 strategy documents, and utilize Root Cause Analysis techniques to audit and validate the performance of the trained Computer Vision data models. In the future, there is an opportunity to continue developing this product and expand the team’s work scope to apply more engineering skills on the data collected to drive factory improvements.

Contributorsde Guzman, Lorenzo (Co-author) / Chmelnik, Nathan (Co-author) / Martz, Emma (Co-author) / Johnson, Katelyn (Co-author) / Ju, Feng (Thesis director) / Courter, Brandon (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / School of Politics and Global Studies (Contributor) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148346-Thumbnail Image.png
Description

The thesis, titled Identifying Emerging Technologies and Techniques to Assess Indoor Environmental Quality and its Impact on Occupant Health, consists of an in-depth literature review outlining the various impacts of building factors on inhabitant health. Approximately 120 studies analyzing how environmental factors influence occupant health were reviewed and 25 were

The thesis, titled Identifying Emerging Technologies and Techniques to Assess Indoor Environmental Quality and its Impact on Occupant Health, consists of an in-depth literature review outlining the various impacts of building factors on inhabitant health. Approximately 120 studies analyzing how environmental factors influence occupant health were reviewed and 25 were used to build this literature review. The thesis provides insight into the definitions of well-being, health, and the built environment and analyzes the relationship between the three. This complex relationship has been at the forefront of academic research in recent years, especially given the impact of the COVID-19 pandemic. Essentially, an individual’s health and well-being is encompassed by their physical, mental, and social state of being. Due to the increasing amount of time spent in indoor environments the built environment influences these measures of health and well-being through various environmental factors (Indoor Air Quality, humidity, temperature, lighting, acoustics, ergonomics) defining the overall Indoor Environmental Quality. This thesis reviewed the mentioned intervention and experimental studies conducted to determine how fluctuations in environmental factors influence reported health results of occupants in the short and long term. Questionnaires, interviews, medical tests, physical measurements, and sensors were used to track occupant health measures. Sensors are also used to record environmental factor levels and are now beginning to be incorporated into the building production process to promote occupant health in healthy and smart buildings. The goal is ultimately to develop these smart and healthy buildings using study results and advancing technologies and techniques as outlined in the thesis.

ContributorsWhite, Elizabeth Mary (Author) / Wu, Teresa (Thesis director) / Wen, Jin (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148358-Thumbnail Image.png
Description

Perfection is extremely difficult to achieve when playing team sports. This is especially true for lacrosse, a sport where dropped passes, missed shots and turnovers are prevalent even at the college and professional levels of the game. In order to improve on mistakes, teams must first recognize where the errors

Perfection is extremely difficult to achieve when playing team sports. This is especially true for lacrosse, a sport where dropped passes, missed shots and turnovers are prevalent even at the college and professional levels of the game. In order to improve on mistakes, teams must first recognize where the errors are being made. The purpose of this project is to implement the DMAIC process improvement method into lacrosse, with the goal of identifying and implementing improvements, leading to a more successful team.
In order to use DMAIC, lacrosse was expressed as a process that included five phases: offense, defense, riding, clearing and faceoffs. Data was gathered for each phase using game film from the Arizona State Men’s Club Lacrosse Team over the course of the 2019 and 2020 seasons. The data was then analyzed by comparing the output statistics of each phase to the goal differential, number of goals scored, and number of goals against. Once the areas of improvement were determined, additional analysis was done to determine why these certain areas needed improvement. The results provided what changes needed to be made in order to improve the team. In order to ensure the team sustained their success, control measures were put in place to determine what action needs to be taken and when.

Created2021-05
148215-Thumbnail Image.png
Description

Time studies are an effective tool to analyze current production systems and propose improvements. The problem that motivated the project was that conducting time studies and observing the progression of components across the factory floor is a manual process. Four Industrial Engineering students worked with a manufacturing company to develo

Time studies are an effective tool to analyze current production systems and propose improvements. The problem that motivated the project was that conducting time studies and observing the progression of components across the factory floor is a manual process. Four Industrial Engineering students worked with a manufacturing company to develop Computer Vision technology that would automate the data collection process for time studies. The team worked in an Agile environment to complete over 120 classification sets, create 8 strategy documents, and utilize Root Cause Analysis techniques to audit and validate the performance of the trained Computer Vision data models. In the future, there is an opportunity to continue developing this product and expand the team’s work scope to apply more engineering skills on the data collected to drive factory improvements.

ContributorsJohnson, Katelyn Rose (Co-author) / Martz, Emma (Co-author) / Chmelnik, Nathan (Co-author) / de Guzman, Lorenzo (Co-author) / Ju, Feng (Thesis director) / Courter, Brandon (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148216-Thumbnail Image.png
Description

Time studies are an effective tool to analyze current production systems and propose improvements. The problem that motivated the project was that conducting time studies and observing the progression of components across the factory floor is a manual process. Four Industrial Engineering students worked with a manufacturing company to develo

Time studies are an effective tool to analyze current production systems and propose improvements. The problem that motivated the project was that conducting time studies and observing the progression of components across the factory floor is a manual process. Four Industrial Engineering students worked with a manufacturing company to develop Computer Vision technology that would automate the data collection process for time studies. The team worked in an Agile environment to complete over 120 classification sets, create 8 strategy documents, and utilize Root Cause Analysis techniques to audit and validate the performance of the trained Computer Vision data models. In the future, there is an opportunity to continue developing this product and expand the team’s work scope to apply more engineering skills on the data collected to drive factory improvements.

ContributorsChmelnik, Nathan (Co-author) / de Guzman, Lorenzo (Co-author) / Johnson, Katelyn (Co-author) / Martz, Emma (Co-author) / Ju, Feng (Thesis director) / Courter, Brandon (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Our thesis is a cross collaboration between international relations and industrial engineering. We used a combination of database logic, programming, and Microsoft Visual Studio to organize and analyze Middle Eastern politics. Not only does the final product show raw data entry, but it also can answer complex questions about Middle

Our thesis is a cross collaboration between international relations and industrial engineering. We used a combination of database logic, programming, and Microsoft Visual Studio to organize and analyze Middle Eastern politics. Not only does the final product show raw data entry, but it also can answer complex questions about Middle Eastern relations- queries so complex that Google can’t answer them. We organized and analyzed geopolitical data to make it more accessible and easy, hopefully you enjoy!

ContributorsGomez, Livingstone Labaco (Co-author) / Granillo-Walker, Erin (Co-author) / Wu, Teresa (Thesis director) / Thomson, Henry (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147668-Thumbnail Image.png
Description

Arizona State course enrollment regularly reaches triple digits. Despite the large enrollment numbers, the level of communication among students remain relatively low. Students often create Discord servers to keep in touch with classmates, but this requires each individual student to track down the invite link. The purpose of this project

Arizona State course enrollment regularly reaches triple digits. Despite the large enrollment numbers, the level of communication among students remain relatively low. Students often create Discord servers to keep in touch with classmates, but this requires each individual student to track down the invite link. The purpose of this project is to create an inviting chat service for students with minimal barriers of entry. This website, https://gibbl.io, offers a chat room for every class at ASU, making it simple for students to maintain communication.

Created2021-05