Matching Items (655)
Filtering by

Clear all filters

131537-Thumbnail Image.png
Description
At present, the vast majority of human subjects with neurological disease are still diagnosed through in-person assessments and qualitative analysis of patient data. In this paper, we propose to use Topological Data Analysis (TDA) together with machine learning tools to automate the process of Parkinson’s disease classification and severity assessment.

At present, the vast majority of human subjects with neurological disease are still diagnosed through in-person assessments and qualitative analysis of patient data. In this paper, we propose to use Topological Data Analysis (TDA) together with machine learning tools to automate the process of Parkinson’s disease classification and severity assessment. An automated, stable, and accurate method to evaluate Parkinson’s would be significant in streamlining diagnoses of patients and providing families more time for corrective measures. We propose a methodology which incorporates TDA into analyzing Parkinson’s disease postural shifts data through the representation of persistence images. Studying the topology of a system has proven to be invariant to small changes in data and has been shown to perform well in discrimination tasks. The contributions of the paper are twofold. We propose a method to 1) classify healthy patients from those afflicted by disease and 2) diagnose the severity of disease. We explore the use of the proposed method in an application involving a Parkinson’s disease dataset comprised of healthy-elderly, healthy-young and Parkinson’s disease patients.
ContributorsRahman, Farhan Nadir (Co-author) / Nawar, Afra (Co-author) / Turaga, Pavan (Thesis director) / Krishnamurthi, Narayanan (Committee member) / Electrical Engineering Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133896-Thumbnail Image.png
Description
After freelancing on my own for the past year and a half, I have realized that one of the biggest obstacles to college entrepreneurs is a fear or apprehension to sales. As a computer science major trying to sell my services, I discovered very quickly that I had not been

After freelancing on my own for the past year and a half, I have realized that one of the biggest obstacles to college entrepreneurs is a fear or apprehension to sales. As a computer science major trying to sell my services, I discovered very quickly that I had not been prepared for the difficulty of learning sales. Sales get a bad rap and very often is the last thing that young entrepreneurs want to try, but the reality is that sales is oxygen to a company and a required skill for an entrepreneur. Due to this, I compiled all of my knowledge into an e-book for young entrepreneurs starting out to learn how to open up a conversation with a prospect all the way to closing them on the phone. Instead of starting from scratch like I did, college entrepreneurs can learn the bare basics of selling their own services, even if they are terrified of sales and what it entails. In this e-book, there are tips that I have learned to deal with my anxiety about sales such as taking the pressure off of yourself and prioritizing listening more than pitching. Instead of trying to teach sales expecting people to be natural sales people, this e-book takes the approach of helping entrepreneurs that are terrified of sales and show them how they can cope with this fear and still close a client. In the future, I hope young entrepreneurs will have access to more resources that handle this fear and make it much easier for them to learn it by themselves. This e-book is the first step.
ContributorsMead, Kevin Tyler (Author) / Sebold, Brent (Thesis director) / Kruse, Gabriel (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133901-Thumbnail Image.png
Description
This thesis dives into the world of artificial intelligence by exploring the functionality of a single layer artificial neural network through a simple housing price classification example while simultaneously considering its impact from a data management perspective on both the software and hardware level. To begin this study, the universally

This thesis dives into the world of artificial intelligence by exploring the functionality of a single layer artificial neural network through a simple housing price classification example while simultaneously considering its impact from a data management perspective on both the software and hardware level. To begin this study, the universally accepted model of an artificial neuron is broken down into its key components and then analyzed for functionality by relating back to its biological counterpart. The role of a neuron is then described in the context of a neural network, with equal emphasis placed on how it individually undergoes training and then for an entire network. Using the technique of supervised learning, the neural network is trained with three main factors for housing price classification, including its total number of rooms, bathrooms, and square footage. Once trained with most of the generated data set, it is tested for accuracy by introducing the remainder of the data-set and observing how closely its computed output for each set of inputs compares to the target value. From a programming perspective, the artificial neuron is implemented in C so that it would be more closely tied to the operating system and therefore make the collected profiler data more precise during the program's execution. The program is designed to break down each stage of the neuron's training process into distinct functions. In addition to utilizing more functional code, the struct data type is used as the underlying data structure for this project to not only represent the neuron but for implementing the neuron's training and test data. Once fully trained, the neuron's test results are then graphed to visually depict how well the neuron learned from its sample training set. Finally, the profiler data is analyzed to describe how the program operated from a data management perspective on the software and hardware level.
ContributorsRichards, Nicholas Giovanni (Author) / Miller, Phillip (Thesis director) / Meuth, Ryan (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134154-Thumbnail Image.png
Description
The need for automated / computational fact checking has grown substantially in recent times due to the high volume of false information and limited workforce of human fact checkers. This need has spawned research and new developments in this field and has created many different systems and approaches to this

The need for automated / computational fact checking has grown substantially in recent times due to the high volume of false information and limited workforce of human fact checkers. This need has spawned research and new developments in this field and has created many different systems and approaches to this complex problem. This paper attempts to not just explain the most popular methods that are currently being used, but provide experimental results of the comparison of two different systems, the replication of results from their respective papers, and an annotated data-set of different test sentences to be used in these systems.
ContributorsRosenkilde, Trevor Curtis (Author) / Papotti, Paolo (Thesis director) / Candan, Kasim (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134157-Thumbnail Image.png
Description
This paper details the specification and implementation of a single-machine blockchain simulator. It also includes a brief introduction on the history & underlying concepts of blockchain, with explanations on features such as decentralization, openness, trustlessness, and consensus. The introduction features a brief overview of public interest and current implementations of

This paper details the specification and implementation of a single-machine blockchain simulator. It also includes a brief introduction on the history & underlying concepts of blockchain, with explanations on features such as decentralization, openness, trustlessness, and consensus. The introduction features a brief overview of public interest and current implementations of blockchain before stating potential use cases for blockchain simulation software. The paper then gives a brief literature review of blockchain's role, both as a disruptive technology and a foundational technology. The literature review also addresses the potential and difficulties regarding the use of blockchain in Internet of Things (IoT) networks, and also describes the limitations of blockchain in general regarding computational intensity, storage capacity, and network architecture. Next, the paper gives the specification for a generic blockchain structure, with summaries on the behaviors and purposes of transactions, blocks, nodes, miners, public & private key cryptography, signature validation, and hashing. Finally, the author gives an overview of their specific implementation of the blockchain using C/C++ and OpenSSL. The overview includes a brief description of all the classes and data structures involved in the implementation, including their function and behavior. While the implementation meets the requirements set forward in the specification, the results are more qualitative and intuitive, as time constraints did not allow for quantitative measurements of the network simulation. The paper concludes by discussing potential applications for the simulator, and the possibility for future hardware implementations of blockchain.
ContributorsRauschenbach, Timothy Rex (Author) / Vrudhula, Sarma (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
Description
Bhairavi is a solo performance that investigates belonging and dis-belonging in diaspora communities, especially as it relates to the female body. Specifically, through my experience as a second-generation Indian-American woman - I expose and challenge the notion of ‘tradition,’ as it is forced into women’s bodies, and displaces them in

Bhairavi is a solo performance that investigates belonging and dis-belonging in diaspora communities, especially as it relates to the female body. Specifically, through my experience as a second-generation Indian-American woman - I expose and challenge the notion of ‘tradition,’ as it is forced into women’s bodies, and displaces them in their own homes. Bhairavi is a story told through movement and theatrical narrative composition with research and material collected through structured and unstructured observation of my family, cultural community, and myself.

Note: This work of creative scholarship is rooted in collaboration between three female artist-scholars: Carly Bates, Raji Ganesan, and Allyson Yoder. Working from a common intersectional, feminist framework, we served as artistic co-directors of each other’s solo pieces and co-producers of Negotiations, in which we share these pieces in relationship to each other. Thus, Negotiations is not a showcase of three individual works, but rather a conversation among three voices. As collaborators, we have been uncompromising in the pursuit of our own unique inquiries and voices, and each of our works of creative scholarship stand alone. However, we believe that all of the parts are best understood in relationship to each other, and to the whole. For this reason, we have chosen to cross-reference our thesis documents.

French Vanilla: An Exploration of Biracial Identity Through Narrative Performance by Carly Bates

Deep roots, shared fruits: Emergent creative process and the ecology of solo performance through “Dress in Something Plain and Dark” by Allyson Yoder

Bhairavi: A Performance-Investigation of Belonging and Dis-Belonging in Diaspora
Communities by Raji Ganesan
ContributorsGanesan, Raji J (Author) / Underiner, Tamara (Thesis director) / Stephens, Mary (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135581-Thumbnail Image.png
Description
As the need for data concerning the health of the world's oceans increases, it becomes necessary to develop large, networked communication systems underwater. This research involves the development of an embedded operating system that is suited for optically-linked underwater wireless sensor networks (WSNs). Optical WSNs are unique in that large

As the need for data concerning the health of the world's oceans increases, it becomes necessary to develop large, networked communication systems underwater. This research involves the development of an embedded operating system that is suited for optically-linked underwater wireless sensor networks (WSNs). Optical WSNs are unique in that large sums of data may be received relatively infrequently, and so an operating system for each node must be very responsive. Additionally, the volatile nature of the underwater environment means that the operating system must be accurate, while still maintaining a low profile on a relatively small microprocessor core. The first part of this research concerns the actual implementation of the operating system's task scheduler and additional libraries to maintain synchronization, and the second part involves testing the operating system for responsiveness to interrupts and overall performance.
ContributorsTueller, Peter Michael (Author) / Youngbull, Cody (Thesis director) / Meuth, Ryan (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135207-Thumbnail Image.png
Description
Situations present themselves in which someone needs to navigate inside of a building, for example, to the exit or to retrieve and object. Sometimes, vision is not a reliable sense of spatial awareness, maybe because of a smoky environment, a dark environment, distractions, etc. I propose a wearable haptic device,

Situations present themselves in which someone needs to navigate inside of a building, for example, to the exit or to retrieve and object. Sometimes, vision is not a reliable sense of spatial awareness, maybe because of a smoky environment, a dark environment, distractions, etc. I propose a wearable haptic device, a belt or vest, that provides haptic feedback to help people navigate inside of a building that does not rely on the user's vision. The first proposed device has an obstacle avoidance component and a navigation component. This paper discussed the challenges of designing and implementing this kind of technology in the context of indoor navigation, where GPS signal is poor. Analyzing accelerometer data for the purpose of indoor navigation and then using haptic cues from a wearable haptic device for the navigation were explored in this project, and the device is promising.
ContributorsBerk, Emily Marie (Author) / Atkinson, Robert (Thesis director) / Chavez-Echeagaray, Maria Elena (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135208-Thumbnail Image.png
Description
Radiometric dating estimates the age of rocks by comparing the concentration of a decaying radioactive isotope to the concentrations of the decay byproducts. Radiometric dating has been instrumental in the calculation of the Earth's age, the Moon's age, and the age of our solar system. Geochronologists in the School of

Radiometric dating estimates the age of rocks by comparing the concentration of a decaying radioactive isotope to the concentrations of the decay byproducts. Radiometric dating has been instrumental in the calculation of the Earth's age, the Moon's age, and the age of our solar system. Geochronologists in the School of Earth and Space Exploration at ASU use radiometric dating extensively in their research, and have very specific procedures, hardware, and software to perform the dating calculations. Researchers use lasers to drill small holes, or ablations, in rock faces, collect the masses of various isotopes using a mass spectrometer, and scan the pit with an interferometer, which records the z heights of the pit on an x-y grid. This scan is then processed by custom-made software to determine the volume of the pit, which then is used along with the isotope masses and known decay rates to determine the age of the rock. My research has been focused on improving this volume calculation through computational geometry methods of surface reconstruction. During the process, I created an web application that reads interferometer scans, reconstructs a surface from those scans with Poisson reconstruction, renders the surface in the browser, and calculates the volume of the pit based on parameters provided by the researcher. The scans are stored in a central cloud datastore for future analysis, allowing the researchers in the geochronology community to collaborate together on scans from various rocks in their individual labs. The result of the project has been a complete and functioning application that is accessible to any researcher and reproducible from any computer. The 3D representation of the scan data allows researchers to easily understand the topology of the pit ablation and determine early on whether the measurements of the interferometer are trustworthy for the particular ablation. The volume calculation by the new software also reduces the variability in the volume calculation, which hopefully indicates the process is removing noise from the scan data and performing volume calculations on a more realistic representation of the actual ablation. In the future, this research will be used as the groundwork for more robust testing and closer approximations through implementation of different reconstruction algorithms. As the project grows and becomes more usable, hopefully there will be adoption in the community and it will become a reproducible standard for geochronologists performing radiometric dating.
ContributorsPruitt, Jacob Richard (Author) / Hodges, Kip (Thesis director) / Mercer, Cameron (Committee member) / van Soest, Matthijs (Committee member) / Department of Economics (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134286-Thumbnail Image.png
Description
Many researchers aspire to create robotics systems that assist humans in common office tasks, especially by taking over delivery and messaging tasks. For meaningful interactions to take place, a mobile robot must be able to identify the humans it interacts with and communicate successfully with them. It must also be

Many researchers aspire to create robotics systems that assist humans in common office tasks, especially by taking over delivery and messaging tasks. For meaningful interactions to take place, a mobile robot must be able to identify the humans it interacts with and communicate successfully with them. It must also be able to successfully navigate the office environment. While mobile robots are well suited for navigating and interacting with elements inside a deterministic office environment, attempting to interact with human beings in an office environment remains a challenge due to the limits on the amount of cost-efficient compute power onboard the robot. In this work, I propose the use of remote cloud services to offload intensive interaction tasks. I detail the interactions required in an office environment and discuss the challenges faced when implementing a human-robot interaction platform in a stochastic office environment. I also experiment with cloud services for facial recognition, speech recognition, and environment navigation and discuss my results. As part of my thesis, I have implemented a human-robot interaction system utilizing cloud APIs into a mobile robot, enabling it to navigate the office environment, identify humans within the environment, and communicate with these humans.
Created2017-05