Matching Items (21)
151688-Thumbnail Image.png
Description
This study empirically evaluated the effectiveness of the instructional design, learning tools, and role of the teacher in three versions of a semester-long, high-school remedial Algebra I course to determine what impact self-regulated learning skills and learning pattern training have on students' self-regulation, math achievement, and motivation. The 1st version

This study empirically evaluated the effectiveness of the instructional design, learning tools, and role of the teacher in three versions of a semester-long, high-school remedial Algebra I course to determine what impact self-regulated learning skills and learning pattern training have on students' self-regulation, math achievement, and motivation. The 1st version was a business-as-usual traditional classroom teaching mathematics with direct instruction. The 2rd version of the course provided students with self-paced, individualized Algebra instruction with a web-based, intelligent tutor. The 3rd version of the course coupled self-paced, individualized instruction on the web-based, intelligent Algebra tutor coupled with a series of e-learning modules on self-regulated learning knowledge and skills that were distributed throughout the semester. A quasi-experimental, mixed methods evaluation design was used by assigning pre-registered, high-school remedial Algebra I class periods made up of an approximately equal number of students to one of the three study conditions or course versions: (a) the control course design, (b) web-based, intelligent tutor only course design, and (c) web-based, intelligent tutor + SRL e-learning modules course design. While no statistically significant differences on SRL skills, math achievement or motivation were found between the three conditions, effect-size estimates provide suggestive evidence that using the SRL e-learning modules based on ARCS motivation model (Keller, 2010) and Let Me Learn learning pattern instruction (Dawkins, Kottkamp, & Johnston, 2010) may help students regulate their learning and improve their study skills while using a web-based, intelligent Algebra tutor as evidenced by positive impacts on math achievement, motivation, and self-regulated learning skills. The study also explored predictive analyses using multiple regression and found that predictive models based on independent variables aligned to student demographics, learning mastery skills, and ARCS motivational factors are helpful in defining how to further refine course design and design learning evaluations that measure achievement, motivation, and self-regulated learning in web-based learning environments, including intelligent tutoring systems.
ContributorsBarrus, Angela (Author) / Atkinson, Robert K (Thesis advisor) / Van de Sande, Carla (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2013
152244-Thumbnail Image.png
Description
Statistics is taught at every level of education, yet teachers often have to assume their students have no knowledge of statistics and start from scratch each time they set out to teach statistics. The motivation for this experimental study comes from interest in exploring educational applications of augmented reality (AR)

Statistics is taught at every level of education, yet teachers often have to assume their students have no knowledge of statistics and start from scratch each time they set out to teach statistics. The motivation for this experimental study comes from interest in exploring educational applications of augmented reality (AR) delivered via mobile technology that could potentially provide rich, contextualized learning for understanding concepts related to statistics education. This study examined the effects of AR experiences for learning basic statistical concepts. Using a 3 x 2 research design, this study compared learning gains of 252 undergraduate and graduate students from a pre- and posttest given before and after interacting with one of three types of augmented reality experiences, a high AR experience (interacting with three dimensional images coupled with movement through a physical space), a low AR experience (interacting with three dimensional images without movement), or no AR experience (two dimensional images without movement). Two levels of collaboration (pairs and no pairs) were also included. Additionally, student perceptions toward collaboration opportunities and engagement were compared across the six treatment conditions. Other demographic information collected included the students' previous statistics experience, as well as their comfort level in using mobile devices. The moderating variables included prior knowledge (high, average, and low) as measured by the student's pretest score. Taking into account prior knowledge, students with low prior knowledge assigned to either high or low AR experience had statistically significant higher learning gains than those assigned to a no AR experience. On the other hand, the results showed no statistical significance between students assigned to work individually versus in pairs. Students assigned to both high and low AR experience perceived a statistically significant higher level of engagement than their no AR counterparts. Students with low prior knowledge benefited the most from the high AR condition in learning gains. Overall, the AR application did well for providing a hands-on experience working with statistical data. Further research on AR and its relationship to spatial cognition, situated learning, high order skill development, performance support, and other classroom applications for learning is still needed.
ContributorsConley, Quincy (Author) / Atkinson, Robert K (Thesis advisor) / Nguyen, Frank (Committee member) / Nelson, Brian C (Committee member) / Arizona State University (Publisher)
Created2013
151913-Thumbnail Image.png
Description
In this mixed-methods study, I examined the relationship between professional development based on the Common Core State Standards for Mathematics and teacher knowledge, classroom practice, and student learning. Participants were randomly assigned to experimental and control groups. The 50-hour professional development treatment was administered to the treatment group during one

In this mixed-methods study, I examined the relationship between professional development based on the Common Core State Standards for Mathematics and teacher knowledge, classroom practice, and student learning. Participants were randomly assigned to experimental and control groups. The 50-hour professional development treatment was administered to the treatment group during one semester, and then a follow-up replication treatment was administered to the control group during the subsequent semester. Results revealed significant differences in teacher knowledge as a result of the treatment using two instruments. The Learning Mathematics for Teaching scales were used to detect changes in mathematical knowledge for teaching, and an online sorting task was used to detect changes in teachers' knowledge of their standards. Results also indicated differences in classroom practice between pairs of matched teachers selected to participate in classroom observations and interviews. No statistical difference was detected between the groups' student assessment scores using the district's benchmark assessment system. This efficacy study contributes to the literature in two ways. First, it provides an evidence base for a professional development model designed to promote effective implementation of the Common Core State Standards for Mathematics. Second, it addresses ways to impact and measure teachers' knowledge of curriculum in addition to their mathematical content knowledge. The treatment was designed to focus on knowledge of curriculum, but it also successfully impacted teachers' specialized content knowledge, knowledge of content and students, and knowledge of content and teaching.
ContributorsRimbey, Kimberly A (Author) / Middleton, James A. (Thesis advisor) / Sloane, Finbarr (Committee member) / Atkinson, Robert K (Committee member) / Arizona State University (Publisher)
Created2013
151942-Thumbnail Image.png
Description
Researchers have postulated that math academic achievement increases student success in college (Lee, 2012; Silverman & Seidman, 2011; Vigdor, 2013), yet 80% of universities and 98% of community colleges require many of their first-year students to be placed in remedial courses (Bettinger & Long, 2009). Many high school graduates are

Researchers have postulated that math academic achievement increases student success in college (Lee, 2012; Silverman & Seidman, 2011; Vigdor, 2013), yet 80% of universities and 98% of community colleges require many of their first-year students to be placed in remedial courses (Bettinger & Long, 2009). Many high school graduates are entering college ill prepared for the rigors of higher education, lacking understanding of basic and important principles (ACT, 2012). The desire to increase academic achievement is a wide held aspiration in education and the idea of adapting instruction to individuals is one approach to accomplish this goal (Lalley & Gentile, 2009a). Frequently, adaptive learning environments rely on a mastery learning approach, it is thought that when students are afforded the opportunity to master the material, deeper and more meaningful learning is likely to occur. Researchers generally agree that the learning environment, the teaching approach, and the students' attributes are all important to understanding the conditions that promote academic achievement (Bandura, 1977; Bloom, 1968; Guskey, 2010; Cassen, Feinstein & Graham, 2008; Changeiywo, Wambugu & Wachanga, 2011; Lee, 2012; Schunk, 1991; Van Dinther, Dochy & Segers, 2011). The present study investigated the role of college students' affective attributes and skills, such as academic competence and academic resilience, in an adaptive mastery-based learning environment on their academic performance, while enrolled in a remedial mathematics course. The results showed that the combined influence of students' affective attributes and academic resilience had a statistically significant effect on students' academic performance. Further, the mastery-based learning environment also had a significant effect on their academic competence and academic performance.
ContributorsFoshee, Cecile Mary (Author) / Atkinson, Robert K (Thesis advisor) / Elliott, Stephen N. (Committee member) / Horan, John (Committee member) / Arizona State University (Publisher)
Created2013
152165-Thumbnail Image.png
Description
Surgery as a profession requires significant training to improve both clinical decision making and psychomotor proficiency. In the medical knowledge domain, tools have been developed, validated, and accepted for evaluation of surgeons' competencies. However, assessment of the psychomotor skills still relies on the Halstedian model of apprenticeship, wherein surgeons are

Surgery as a profession requires significant training to improve both clinical decision making and psychomotor proficiency. In the medical knowledge domain, tools have been developed, validated, and accepted for evaluation of surgeons' competencies. However, assessment of the psychomotor skills still relies on the Halstedian model of apprenticeship, wherein surgeons are observed during residency for judgment of their skills. Although the value of this method of skills assessment cannot be ignored, novel methodologies of objective skills assessment need to be designed, developed, and evaluated that augment the traditional approach. Several sensor-based systems have been developed to measure a user's skill quantitatively, but use of sensors could interfere with skill execution and thus limit the potential for evaluating real-life surgery. However, having a method to judge skills automatically in real-life conditions should be the ultimate goal, since only with such features that a system would be widely adopted. This research proposes a novel video-based approach for observing surgeons' hand and surgical tool movements in minimally invasive surgical training exercises as well as during laparoscopic surgery. Because our system does not require surgeons to wear special sensors, it has the distinct advantage over alternatives of offering skills assessment in both learning and real-life environments. The system automatically detects major skill-measuring features from surgical task videos using a computing system composed of a series of computer vision algorithms and provides on-screen real-time performance feedback for more efficient skill learning. Finally, the machine-learning approach is used to develop an observer-independent composite scoring model through objective and quantitative measurement of surgical skills. To increase effectiveness and usability of the developed system, it is integrated with a cloud-based tool, which automatically assesses surgical videos upload to the cloud.
ContributorsIslam, Gazi (Author) / Li, Baoxin (Thesis advisor) / Liang, Jianming (Thesis advisor) / Dinu, Valentin (Committee member) / Greenes, Robert (Committee member) / Smith, Marshall (Committee member) / Kahol, Kanav (Committee member) / Patel, Vimla L. (Committee member) / Arizona State University (Publisher)
Created2013
151845-Thumbnail Image.png
Description
This study explored three methods to measure cognitive load in a learning environment using four logic puzzles that systematically varied in level of intrinsic cognitive load. Participants' perceived intrinsic load was simultaneously measured with a self-report measure--a traditional subjective measure--and two objective, physiological measures based on eye-tracking and EEG technology.

This study explored three methods to measure cognitive load in a learning environment using four logic puzzles that systematically varied in level of intrinsic cognitive load. Participants' perceived intrinsic load was simultaneously measured with a self-report measure--a traditional subjective measure--and two objective, physiological measures based on eye-tracking and EEG technology. In addition to gathering self-report, eye-tracking data, and EEG data, this study also captured data on individual difference variables and puzzle performance. Specifically, this study addressed the following research questions: 1. Are self-report ratings of cognitive load sensitive to tasks that increase in level of intrinsic load? 2. Are physiological measures sensitive to tasks that increase in level of intrinsic load? 3. To what extent do objective physiological measures and individual difference variables predict self-report ratings of intrinsic cognitive load? 4. Do the number of errors and the amount of time spent on each puzzle increase as the puzzle difficulty increases? Participants were 56 undergraduate students. Results from analyses with inferential statistics and data-mining techniques indicated features from the physiological data were sensitive to the puzzle tasks that varied in level of intrinsic load. The self-report measures performed similarly when the difference in intrinsic load of the puzzles was the most varied. Implications for these results and future directions for this line of research are discussed.
ContributorsJoseph, Stacey (Author) / Atkinson, Robert K (Thesis advisor) / Johnson-Glenberg, Mina (Committee member) / Nelson, Brian (Committee member) / Klein, James (Committee member) / Arizona State University (Publisher)
Created2013
153124-Thumbnail Image.png
Description
Writing instruction poses both cognitive and affective challenges, particularly for adolescents. American teens not only fall short of national writing standards, but also tend to lack motivation for school writing, claiming it is too challenging and that they have nothing interesting to write about. Yet, teens enthusiastically immerse themselves in

Writing instruction poses both cognitive and affective challenges, particularly for adolescents. American teens not only fall short of national writing standards, but also tend to lack motivation for school writing, claiming it is too challenging and that they have nothing interesting to write about. Yet, teens enthusiastically immerse themselves in informal writing via text messaging, email, and social media, regularly sharing their thoughts and experiences with a real audience. While these activities are, in fact, writing, research indicates that teens instead view them as simply "communication" or "being social." Accordingly, the aim of this work was to infuse formal classroom writing with naturally engaging elements of informal social media writing to positively impact writing quality and the motivation to write, resulting in the development and implementation of Sparkfolio, an online prewriting tool that: a) addresses affective challenges by allowing students to choose personally relevant topics using their own social media data; and b) provides cognitive support with a planner that helps develop and organize ideas in preparation for writing a first draft. This tool was evaluated in a study involving 46 eleventh-grade English students writing three personal narratives each, and including three experimental conditions: a) using self-authored social media post data while planning with Sparkfolio; b) using only data from posts authored by one's friends while planning with Sparkfolio; and c) a control group that did not use Sparkfolio. The dependent variables were the change in writing motivation and the change in writing quality that occurred before and after the intervention. A scaled pre/posttest measured writing motivation, and the first and third narratives were used as writing quality pre/posttests. A usability scale, logged Sparkfolio data, and qualitative measures were also analyzed. Results indicated that participants who used Sparkfolio had statistically significantly higher gains in writing quality than the control group, validating Sparkfolio as effective. Additionally, while nonsignificant, results suggested that planning with self-authored data provided more writing quality and motivational benefits than data authored by others. This work provides initial empirical evidence that leveraging students' own social media data (securely) holds potential in fostering meaningful personalized learning.
ContributorsSadauskas, John (Author) / Atkinson, Robert K (Thesis advisor) / Savenye, Wilhelmina (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2014
151020-Thumbnail Image.png
Description
Critical care environments are complex in nature. Fluctuating team dynamics and the plethora of technology and equipment create unforeseen demands on clinicians. Such environments become chaotic very quickly due to the chronic exposure to unpredictable clusters of events. In order to cope with this complexity, clinicians tend to develop ad-hoc

Critical care environments are complex in nature. Fluctuating team dynamics and the plethora of technology and equipment create unforeseen demands on clinicians. Such environments become chaotic very quickly due to the chronic exposure to unpredictable clusters of events. In order to cope with this complexity, clinicians tend to develop ad-hoc adaptations to function in an effective manner. It is these adaptations or "deviations" from expected behaviors that provide insight into the processes that shape the overall behavior of the complex system. The research described in this manuscript examines the cognitive basis of clinicians' adaptive mechanisms and presents a methodology for studying the same. Examining interactions in complex systems is difficult due to the disassociation between the nature of the environment and the tools available to analyze underlying processes. In this work, the use of a mixed methodology framework to study trauma critical care, a complex environment, is presented. The hybrid framework supplements existing methods of data collection (qualitative observations) with quantitative methods (use of electronic tags) to capture activities in the complex system. Quantitative models of activities (using Hidden Markov Modeling) and theoretical models of deviations were developed to support this mixed methodology framework. The quantitative activity models developed were tested with a set of fifteen simulated activities that represent workflow in trauma care. A mean recognition rate of 87.5% was obtained in automatically recognizing activities. Theoretical models, on the other hand, were developed using field observations of 30 trauma cases. The analysis of the classification schema (with substantial inter-rater reliability) and 161 deviations identified shows that expertise and role played by the clinician in the trauma team influences the nature of deviations made (p<0.01). The results shows that while expert clinicians deviate to innovate, deviations of novices often result in errors. Experts' flexibility and adaptiveness allow their deviations to generate innovative ideas, in particular when dynamic adjustments are required in complex situations. The findings suggest that while adherence to protocols and standards is important for novice practitioners to reduce medical errors and ensure patient safety, there is strong need for training novices in coping with complex situations as well.
ContributorsVankipuram, Mithra (Author) / Greenes, Robert A (Thesis advisor) / Patel, Vimla L. (Thesis advisor) / Petitti, Diana B. (Committee member) / Dinu, Valentin (Committee member) / Smith, Marshall L. (Committee member) / Arizona State University (Publisher)
Created2012
156121-Thumbnail Image.png
Description
The technological revolution has caused the entire world to migrate to a digital environment and health care is no exception to this. Electronic Health Records (EHR) or Electronic Medical Records (EMR) are the digital repository for health data of patients. Nation wide efforts have been made by the federal government

The technological revolution has caused the entire world to migrate to a digital environment and health care is no exception to this. Electronic Health Records (EHR) or Electronic Medical Records (EMR) are the digital repository for health data of patients. Nation wide efforts have been made by the federal government to promote the usage of EHRs as they have been found to improve quality of health service. Although EHR systems have been implemented almost everywhere, active use of EHR applications have not replaced paper documentation. Rather, they are often used to store transcribed data from paper documentation after each clinical procedure. This process is found to be prone to errors such as data omission, incomplete data documentation and is also time consuming. This research aims to help improve adoption of real-time EHRs usage while documenting data by improving the usability of an iPad based EHR application that is used during resuscitation process in the intensive care unit. Using Cognitive theories and HCI frameworks, this research identified areas of improvement and customizations in the application that were required to exclusively match the work flow of the resuscitation team at the Mayo Clinic. In addition to this, a Handwriting Recognition Engine (HRE) was integrated into the application to support a stylus based information input into EHR, which resembles our target users’ traditional pen and paper based documentation process. The EHR application was updated and then evaluated with end users at the Mayo clinic. The users found the application to be efficient, usable and they showed preference in using this application over the paper-based documentation.
ContributorsSubbiah, Naveen Kumar (Author) / Patel, Vimla L. (Thesis advisor) / Hsiao, Sharon (Thesis advisor) / Sen, Ayan (Committee member) / Atkinson, Robert K (Committee member) / Arizona State University (Publisher)
Created2018
156508-Thumbnail Image.png
Description
A recorded tutorial dialogue can produce positive learning gains, when observed and used to promote discussion between a pair of learners; however, this same effect does not typically occur when an leaner observes a tutorial dialogue by himself or herself. One potential approach to enhancing learning in the latter situation

A recorded tutorial dialogue can produce positive learning gains, when observed and used to promote discussion between a pair of learners; however, this same effect does not typically occur when an leaner observes a tutorial dialogue by himself or herself. One potential approach to enhancing learning in the latter situation is by incorporating self-explanation prompts, a proven technique for encouraging students to engage in active learning and attend to the material in a meaningful way. This study examined whether learning from observing recorded tutorial dialogues could be made more effective by adding self-explanation prompts in computer-based learning environment. The research questions in this two-experiment study were (a) Do self-explanation prompts help support student learning while watching a recorded dialogue? and (b) Does collaboratively observing (in dyads) a tutorial dialogue with self-explanation prompts help support student learning while watching a recorded dialogue? In Experiment 1, 66 participants were randomly assigned as individuals to a physics lesson (a) with self-explanation prompts (Condition 1) or (b) without self-explanation prompts (Condition 2). In Experiment 2, 20 participants were randomly assigned in 10 pairs to the same physics lesson (a) with self-explanation prompts (Condition 1) or (b) without self-explanation prompts (Condition 2). Pretests and posttests were administered, as well as other surveys that measured motivation and system usability. Although supplemental analyses showed some significant differences among individual scale items or factors, neither primary results for Experiment 1 or Experiment 2 were significant for changes in posttest scores from pretest scores for learning, motivation, or system usability assessments.
ContributorsWright, Kyle Matthew (Author) / Atkinson, Robert K (Thesis advisor) / Savenye, Wilhelmina (Committee member) / Nelson, Brian (Committee member) / Arizona State University (Publisher)
Created2018