Matching Items (3)
Filtering by

Clear all filters

149727-Thumbnail Image.png
Description
This dissertation consists of two essays. The first measures the degree to which schooling accounts for differences in industry value added per worker. Using a sample of 107 economies and seven industries, the paper considers the patterns in the education levels of various industries and their relative value added per

This dissertation consists of two essays. The first measures the degree to which schooling accounts for differences in industry value added per worker. Using a sample of 107 economies and seven industries, the paper considers the patterns in the education levels of various industries and their relative value added per worker. Agriculture has notably less schooling and is less productive than other sectors, while a group of services including financial services, education and health care has higher rates of schooling and higher value added per worker. The essay finds that in the case of these specific industries education is important in explaining sector differences, and the role of education all other industries are less defined. The second essay provides theory to investigate the relationship between agriculture and schooling. During structural transformation, workers shift from the agriculture sector with relatively low schooling to other sectors which have more schooling. This essay explores to what extent changes in the costs of acquiring schooling drive structural transformation using a multi-sector growth model which includes a schooling choice. The model is disciplined using cross country data on sector of employment and schooling constructed from the IPUM International census collection. Counterfactual exercises are used to determine how much structural transformation is accounted for by changes in the cost of acquiring schooling. These changes account for small shares of structural transformation in all economies with a median near zero.
ContributorsSchreck, Paul (Author) / Herrendorf, Berthold (Committee member) / Lagakos, David (Committee member) / Schoellman, Todd (Committee member) / Arizona State University (Publisher)
Created2011
158901-Thumbnail Image.png
Description
A novel underwater, open source, and configurable vehicle that mimics and leverages advances in quad-copter controls and dynamics, called the uDrone, was designed, built and tested. This vehicle was developed to aid coral reef researchers in collecting underwater spectroscopic data for the purpose of monitoring coral reef health. It is

A novel underwater, open source, and configurable vehicle that mimics and leverages advances in quad-copter controls and dynamics, called the uDrone, was designed, built and tested. This vehicle was developed to aid coral reef researchers in collecting underwater spectroscopic data for the purpose of monitoring coral reef health. It is designed with an on-board integrated sensor system to support both automated navigation in close proximity to reefs and environmental observation. Additionally, the vehicle can serve as a testbed for future research in the realm of programming for autonomous underwater navigation and data collection, given the open-source simulation and software environment in which it was developed. This thesis presents the motivation for and design components of the new vehicle, a model governing vehicle dynamics, and the results of two proof-of-concept simulation for automated control.
ContributorsGoldman, Alex (Author) / Das, Jnaneshwar (Thesis advisor) / Asner, Greg (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2020
130939-Thumbnail Image.png
Description
The scientific research conducted by science, technology, engineering, and mathematics (STEM) institutions is groundbreaking. Everyday, scientists create a deeper understanding of the world around us, and then communicate that understanding through journal papers, articles, and conferences. To strengthen these traditional forms of communication, science communicators can use social media platforms

The scientific research conducted by science, technology, engineering, and mathematics (STEM) institutions is groundbreaking. Everyday, scientists create a deeper understanding of the world around us, and then communicate that understanding through journal papers, articles, and conferences. To strengthen these traditional forms of communication, science communicators can use social media platforms such as Twitter and Facebook to promote themselves and earn digital audience engagement that will grow the impact and success of their research. This thesis synthesizes research on human communication theories, digital user behavior, and science communication practices in order to create the “Science Communicator’s Guide to Social Media Engagement”. This guide empowers science communicators to utilize social media in a way that can increase their digital audience engagement, expand the reach of their research, and ultimately amplify their professional presence in the scientific community.
ContributorsVandekop, Victoria Margueritte (Author) / Asner, Greg (Thesis director) / Martin, Roberta (Committee member) / Hugh Downs School of Human Communication (Contributor) / Watts College of Public Service & Community Solut (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12