Matching Items (66)
150418-Thumbnail Image.png
Description
Diseases have been part of human life for generations and evolve within the population, sometimes dying out while other times becoming endemic or the cause of recurrent outbreaks. The long term influence of a disease stems from different dynamics within or between pathogen-host, that have been analyzed and studied by

Diseases have been part of human life for generations and evolve within the population, sometimes dying out while other times becoming endemic or the cause of recurrent outbreaks. The long term influence of a disease stems from different dynamics within or between pathogen-host, that have been analyzed and studied by many researchers using mathematical models. Co-infection with different pathogens is common, yet little is known about how infection with one pathogen affects the host's immunological response to another. Moreover, no work has been found in the literature that considers the variability of the host immune health or that examines a disease at the population level and its corresponding interconnectedness with the host immune system. Knowing that the spread of the disease in the population starts at the individual level, this thesis explores how variability in immune system response within an endemic environment affects an individual's vulnerability, and how prone it is to co-infections. Immunology-based models of Malaria and Tuberculosis (TB) are constructed by extending and modifying existing mathematical models in the literature. The two are then combined to give a single nine-variable model of co-infection with Malaria and TB. Because these models are difficult to gain any insight analytically due to the large number of parameters, a phenomenological model of co-infection is proposed with subsystems corresponding to the individual immunology-based model of a single infection. Within this phenomenological model, the variability of the host immune health is also incorporated through three different pathogen response curves using nonlinear bounded Michaelis-Menten functions that describe the level or state of immune system (healthy, moderate and severely compromised). The immunology-based models of Malaria and TB give numerical results that agree with the biological observations. The Malaria--TB co-infection model gives reasonable results and these suggest that the order in which the two diseases are introduced have an impact on the behavior of both. The subsystems of the phenomenological models that correspond to a single infection (either of Malaria or TB) mimic much of the observed behavior of the immunology-based counterpart and can demonstrate different behavior depending on the chosen pathogen response curve. In addition, varying some of the parameters and initial conditions in the phenomenological model yields a range of topologically different mathematical behaviors, which suggests that this behavior may be able to be observed in the immunology-based models as well. The phenomenological models clearly replicate the qualitative behavior of primary and secondary infection as well as co-infection. The mathematical solutions of the models correspond to the fundamental states described by immunologists: virgin state, immune state and tolerance state. The phenomenological model of co-infection also demonstrates a range of parameter values and initial conditions in which the introduction of a second disease causes both diseases to grow without bound even though those same parameters and initial conditions did not yield unbounded growth in the corresponding subsystems. This results applies to all three states of the host immune system. In terms of the immunology-based system, this would suggest the following: there may be parameter values and initial conditions in which a person can clear Malaria or TB (separately) from their system but in which the presence of both can result in the person dying of one of the diseases. Finally, this thesis studies links between epidemiology (population level) and immunology in an effort to assess the impact of pathogen's spread within the population on the immune response of individuals. Models of Malaria and TB are proposed that incorporate the immune system of the host into a mathematical model of an epidemic at the population level.
ContributorsSoho, Edmé L (Author) / Wirkus, Stephen (Thesis advisor) / Castillo-Chavez, Carlos (Thesis advisor) / Chowell-Puente, Gerardo (Committee member) / Arizona State University (Publisher)
Created2011
149949-Thumbnail Image.png
Description
The green building movement has been an effective catalyst in reducing energy demands of buildings and a large number of `green' certified buildings have been in operation for several years. Whether these buildings are actually performing as intended, and if not, identifying specific causes for this discrepancy falls into the

The green building movement has been an effective catalyst in reducing energy demands of buildings and a large number of `green' certified buildings have been in operation for several years. Whether these buildings are actually performing as intended, and if not, identifying specific causes for this discrepancy falls into the general realm of post-occupancy evaluation (POE). POE involves evaluating building performance in terms of energy-use, indoor environmental quality, acoustics and water-use; the first aspect i.e. energy-use is addressed in this thesis. Normally, a full year or more of energy-use and weather data is required to determine the actual post-occupancy energy-use of buildings. In many cases, either measured building performance data is not available or the time and cost implications may not make it feasible to invest in monitoring the building for a whole year. Knowledge about the minimum amount of measured data needed to accurately capture the behavior of the building over the entire year can be immensely beneficial. This research identifies simple modeling techniques to determine best time of the year to begin in-situ monitoring of building energy-use, and the least amount of data required for generating acceptable long-term predictions. Four analysis procedures are studied. The short-term monitoring for long-term prediction (SMLP) approach and dry-bulb temperature analysis (DBTA) approach allow determining the best time and duration of the year for in-situ monitoring to be performed based only on the ambient temperature data of the location. Multivariate change-point (MCP) modeling uses simulated/monitored data to determine best monitoring period of the year. This is also used to validate the SMLP and DBTA approaches. The hybrid inverse modeling method-1 predicts energy-use by combining a short dataset of monitored internal loads with a year of utility-bills, and hybrid inverse method-2 predicts long term building performance using utility-bills only. The results obtained show that often less than three to four months of monitored data is adequate for estimating the annual building energy use, provided that the monitoring is initiated at the right time, and the seasonal as well as daily variations are adequately captured by the short dataset. The predictive accuracy of the short data-sets is found to be strongly influenced by the closeness of the dataset's mean temperature to the annual average temperature. The analysis methods studied would be very useful for energy professionals involved in POE.
ContributorsSingh, Vipul (Author) / Reddy, T. Agami (Thesis advisor) / Bryan, Harvey (Committee member) / Addison, Marlin (Committee member) / Arizona State University (Publisher)
Created2011
149921-Thumbnail Image.png
Description
Arizona has an abundant solar resource and technologically mature systems are available to capture it, but solar energy systems are still considered to be an innovative technology. Adoption rates for solar and wind energy systems rise and fall with the political tides, and are relatively low in most rural areas

Arizona has an abundant solar resource and technologically mature systems are available to capture it, but solar energy systems are still considered to be an innovative technology. Adoption rates for solar and wind energy systems rise and fall with the political tides, and are relatively low in most rural areas in Arizona. This thesis tests the hypothesis that a consumer profile developed to characterize the adopters of renewable energy technology (RET) systems in rural Arizona is the same as the profile of other area residents who performed renovations, upgrades or additions to their homes. Residents of Santa Cruz and Cochise Counties who had obtained building permits to either install a solar or wind energy system or to perform a substantial renovation or upgrade to their home were surveyed to gather demographic, psychographic and behavioristic data. The data from 133 survey responses (76 from RET adopters and 57 from non-adopters) provided insights about their decisions regarding whether or not to adopt a RET system. The results, which are statistically significant at the 99% level of confidence, indicate that RET adopters had smaller households, were older and had higher education levels and greater income levels than the non-adopters. The research also provides answers to three related questions: First, are the energy conservation habits of RET adopters the same as those of non-adopters? Second, what were the sources of information consulted and the most important factors that motivated the decision to purchase a solar or wind energy system? And finally, are any of the factors which influenced the decision to live in a rural area in southeastern Arizona related to the decision to purchase a renewable energy system? The answers are provided, along with a series of recommendations that are designed to inform marketers and other promoters of RETs about how to utilize these results to help achieve their goals.
ContributorsPorter, Wayne Eliot (Author) / Reddy, T. Agami (Thesis advisor) / Pasqualetti, Martin (Committee member) / Larson, Kelli (Committee member) / Kennedy, Linda (Committee member) / Arizona State University (Publisher)
Created2011
Description
Buildings in the United States, account for over 68 percent of electricity consumed, 39 percent of total energy use, and 38 percent of the carbon dioxide emissions. By the year 2035, about 75% of the U.S. building sector will be either new or renovated. The energy efficiency requirements of current

Buildings in the United States, account for over 68 percent of electricity consumed, 39 percent of total energy use, and 38 percent of the carbon dioxide emissions. By the year 2035, about 75% of the U.S. building sector will be either new or renovated. The energy efficiency requirements of current building codes would have a significant impact on future energy use, hence, one of the most widely accepted solutions to slowing the growth rate of GHG emissions and then reversing it involves a stringent adoption of building energy codes. A large number of building energy codes exist and a large number of studies which state the energy savings possible through code compliance. However, most codes are difficult to comprehend and require an extensive understanding of the code, the compliance paths, all mandatory and prescriptive requirements as well as the strategy to convert the same to energy model inputs. This paper provides a simplified solution for the entire process by providing an easy to use interface for code compliance and energy simulation through a spreadsheet based tool, the ECCO or the Energy Code COmpliance Tool. This tool provides a platform for a more detailed analysis of building codes as applicable to each and every individual building in each climate zone. It also facilitates quick building energy simulation to determine energy savings achieved through code compliance. This process is highly beneficial not only for code compliance, but also for identifying parameters which can be improved for energy efficiency. Code compliance is simplified through a series of parametric runs which generates the minimally compliant baseline building and 30% beyond code building. This tool is seen as an effective solution for architects and engineers for an initial level analysis as well as for jurisdictions as a front-end diagnostic check for code compliance.  
ContributorsGoel, Supriya (Author) / Bryan, Harvey J. (Thesis advisor) / Reddy, T. Agami (Committee member) / Addison, Marlin (Committee member) / Arizona State University (Publisher)
Created2011
151916-Thumbnail Image.png
Description
Through manipulation of adaptable opportunities available within a given environment, individuals become active participants in managing personal comfort requirements, by exercising control over their comfort without the assistance of mechanical heating and cooling systems. Similarly, continuous manipulation of a building skin's form, insulation, porosity, and transmissivity qualities exerts control over

Through manipulation of adaptable opportunities available within a given environment, individuals become active participants in managing personal comfort requirements, by exercising control over their comfort without the assistance of mechanical heating and cooling systems. Similarly, continuous manipulation of a building skin's form, insulation, porosity, and transmissivity qualities exerts control over the energy exchanged between indoor and outdoor environments. This research uses four adaptive response variables in a modified software algorithm to explore an adaptive building skin's potential in reacting to environmental stimuli with the purpose of minimizing energy use without sacrificing occupant comfort. Results illustrate that significant energy savings can be realized with adaptive envelopes over static building envelopes even under extreme summer and winter climate conditions; that the magnitude of these savings are dependent on climate and orientation; and that occupant thermal comfort can be improved consistently over comfort levels achieved by optimized static building envelopes. The resulting adaptive envelope's unique climate-specific behavior could inform designers in creating an intelligent kinetic aesthetic that helps facilitate adaptability and resiliency in architecture.
ContributorsErickson, James (Author) / Bryan, Harvey (Thesis advisor) / Addison, Marlin (Committee member) / Kroelinger, Michael D. (Committee member) / Reddy, T. Agami (Committee member) / Arizona State University (Publisher)
Created2013
152142-Thumbnail Image.png
Description
According to the U.S. Energy Information Administration, commercial buildings represent about 40% of the United State's energy consumption of which office buildings consume a major portion. Gauging the extent to which an individual building consumes energy in excess of its peers is the first step in initiating energy efficiency improvement.

According to the U.S. Energy Information Administration, commercial buildings represent about 40% of the United State's energy consumption of which office buildings consume a major portion. Gauging the extent to which an individual building consumes energy in excess of its peers is the first step in initiating energy efficiency improvement. Energy Benchmarking offers initial building energy performance assessment without rigorous evaluation. Energy benchmarking tools based on the Commercial Buildings Energy Consumption Survey (CBECS) database are investigated in this thesis. This study proposes a new benchmarking methodology based on decision trees, where a relationship between the energy use intensities (EUI) and building parameters (continuous and categorical) is developed for different building types. This methodology was applied to medium office and school building types contained in the CBECS database. The Random Forest technique was used to find the most influential parameters that impact building energy use intensities. Subsequently, correlations which were significant were identified between EUIs and CBECS variables. Other than floor area, some of the important variables were number of workers, location, number of PCs and main cooling equipment. The coefficient of variation was used to evaluate the effectiveness of the new model. The customization technique proposed in this thesis was compared with another benchmarking model that is widely used by building owners and designers namely, the ENERGY STAR's Portfolio Manager. This tool relies on the standard Linear Regression methods which is only able to handle continuous variables. The model proposed uses data mining technique and was found to perform slightly better than the Portfolio Manager. The broader impacts of the new benchmarking methodology proposed is that it allows for identifying important categorical variables, and then incorporating them in a local, as against a global, model framework for EUI pertinent to the building type. The ability to identify and rank the important variables is of great importance in practical implementation of the benchmarking tools which rely on query-based building and HVAC variable filters specified by the user.
ContributorsKaskhedikar, Apoorva Prakash (Author) / Reddy, T. Agami (Thesis advisor) / Bryan, Harvey (Committee member) / Runger, George C. (Committee member) / Arizona State University (Publisher)
Created2013
151507-Thumbnail Image.png
Description
Solution methods for certain linear and nonlinear evolution equations are presented in this dissertation. Emphasis is placed mainly on the analytical treatment of nonautonomous differential equations, which are challenging to solve despite the existent numerical and symbolic computational software programs available. Ideas from the transformation theory are adopted allowing one

Solution methods for certain linear and nonlinear evolution equations are presented in this dissertation. Emphasis is placed mainly on the analytical treatment of nonautonomous differential equations, which are challenging to solve despite the existent numerical and symbolic computational software programs available. Ideas from the transformation theory are adopted allowing one to solve the problems under consideration from a non-traditional perspective. First, the Cauchy initial value problem is considered for a class of nonautonomous and inhomogeneous linear diffusion-type equation on the entire real line. Explicit transformations are used to reduce the equations under study to their corresponding standard forms emphasizing on natural relations with certain Riccati(and/or Ermakov)-type systems. These relations give solvability results for the Cauchy problem of the parabolic equation considered. The superposition principle allows to solve formally this problem from an unconventional point of view. An eigenfunction expansion approach is also considered for this general evolution equation. Examples considered to corroborate the efficacy of the proposed solution methods include the Fokker-Planck equation, the Black-Scholes model and the one-factor Gaussian Hull-White model. The results obtained in the first part are used to solve the Cauchy initial value problem for certain inhomogeneous Burgers-type equation. The connection between linear (the Diffusion-type) and nonlinear (Burgers-type) parabolic equations is stress in order to establish a strong commutative relation. Traveling wave solutions of a nonautonomous Burgers equation are also investigated. Finally, it is constructed explicitly the minimum-uncertainty squeezed states for quantum harmonic oscillators. They are derived by the action of corresponding maximal kinematical invariance group on the standard ground state solution. It is shown that the product of the variances attains the required minimum value only at the instances that one variance is a minimum and the other is a maximum, when the squeezing of one of the variances occurs. Such explicit construction is possible due to the relation between the diffusion-type equation studied in the first part and the time-dependent Schrodinger equation. A modication of the radiation field operators for squeezed photons in a perfect cavity is also suggested with the help of a nonstandard solution of Heisenberg's equation of motion.
ContributorsVega-Guzmán, José Manuel, 1982- (Author) / Sulov, Sergei K (Thesis advisor) / Castillo-Chavez, Carlos (Thesis advisor) / Platte, Rodrigo (Committee member) / Chowell-Puente, Gerardo (Committee member) / Arizona State University (Publisher)
Created2013
152124-Thumbnail Image.png
Description
The poor energy efficiency of buildings is a major barrier to alleviating the energy dilemma. Historically, monthly utility billing data was widely available and analytical methods for identifying building energy efficiency improvements, performing building Monitoring and Verification (M&V;) and continuous commissioning (CCx) were based on them. Although robust, these methods

The poor energy efficiency of buildings is a major barrier to alleviating the energy dilemma. Historically, monthly utility billing data was widely available and analytical methods for identifying building energy efficiency improvements, performing building Monitoring and Verification (M&V;) and continuous commissioning (CCx) were based on them. Although robust, these methods were not sensitive enough to detect a number of common causes for increased energy use. In recent years, prevalence of short-term building energy consumption data, also known as Energy Interval Data (EID), made available through the Smart Meters, along with data mining techniques presents the potential of knowledge discovery inherent in this data. This allows more sophisticated analytical tools to be developed resulting in greater sensitivities due to higher prediction accuracies; leading to deep energy savings and highly efficient building system operations. The research explores enhancements to Inverse Statistical Modeling techniques due to the availability of EID. Inverse statistical modeling is the process of identification of prediction model structure and estimates of model parameters. The methodology is based on several common statistical and data mining techniques: cluster analysis for day typing, outlier detection and removal, and generation of building scheduling. Inverse methods are simpler to develop and require fewer inputs for model identification. They can model changes in energy consumption based on changes in climatic variables and up to a certain extent, occupancy. This makes them easy-to-use and appealing to building managers for evaluating any general retrofits, building condition monitoring, continuous commissioning and short-term load forecasting (STLF). After evaluating several model structures, an elegant model form was derived which can be used to model daily energy consumption; which can be extended to model energy consumption for any specific hour by adding corrective terms. Additionally, adding AR terms to this model makes it usable for STLF. Two different buildings, one synthetic (ASHRAE medium-office prototype) building and another, an actual office building, were modeled using these techniques. The methodologies proposed have several novel features compared to the manner in which these models have been described earlier. Finally, this thesis investigates characteristic fault signature identification from detailed simulation models and subsequent inverse analysis.
ContributorsJalori, Saurabh (Author) / Reddy, T. Agami (Thesis advisor) / Bryan, Harvey (Committee member) / Runger, George C. (Committee member) / Arizona State University (Publisher)
Created2013
136083-Thumbnail Image.png
Description
Mortality of 1918 influenza virus was high, partly due to bacteria coinfections. We characterize pandemic mortality in Arizona, which had high prevalence of tuberculosis. We applied regressions to over 35,000 data points to estimate the basic reproduction number and excess mortality. Age-specific mortality curves show elevated mortality for all age

Mortality of 1918 influenza virus was high, partly due to bacteria coinfections. We characterize pandemic mortality in Arizona, which had high prevalence of tuberculosis. We applied regressions to over 35,000 data points to estimate the basic reproduction number and excess mortality. Age-specific mortality curves show elevated mortality for all age groups, especially the young, and senior sparing effects. The low value for reproduction number indicates that transmissibility was moderately low.
ContributorsJenner, Melinda Eva (Author) / Chowell-Puente, Gerardo (Thesis director) / Kostelich, Eric (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136284-Thumbnail Image.png
Description
Background: While research has quantified the mortality burden of the 1957 H2N2 influenza pandemic in the United States, little is known about how the virus spread locally in Arizona, an area where the dry climate was promoted as reducing respiratory illness transmission yet tuberculosis prevalence was high.
Methods: Using archival

Background: While research has quantified the mortality burden of the 1957 H2N2 influenza pandemic in the United States, little is known about how the virus spread locally in Arizona, an area where the dry climate was promoted as reducing respiratory illness transmission yet tuberculosis prevalence was high.
Methods: Using archival death certificates from 1954 to 1961, this study quantified the age-specific seasonal patterns, excess-mortality rates, and transmissibility patterns of the 1957 pandemic in Maricopa County, Arizona. By applying cyclical Serfling linear regression models to weekly mortality rates, the excess-mortality rates due to respiratory and all-causes were estimated for each age group during the pandemic period. The reproduction number was quantified from weekly data using a simple growth rate method and generation intervals of 3 and 4 days. Local newspaper articles from The Arizona Republic were analyzed from 1957-1958.
Results: Excess-mortality rates varied between waves, age groups, and causes of death, but overall remained low. From October 1959-June 1960, the most severe wave of the pandemic, the absolute excess-mortality rate based on respiratory deaths per 10,000 population was 17.85 in the elderly (≥65 years). All other age groups had extremely low excess-mortality and the typical U-shaped age-pattern was absent. However, relative risk was greatest (3.61) among children and young adolescents (5-14 years) from October 1957-March 1958, based on incidence rates of respiratory deaths. Transmissibility was greatest during the same 1957-1958 period, when the mean reproduction number was 1.08-1.11, assuming 3 or 4 day generation intervals and exponential or fixed distributions.
Conclusions: Maricopa County largely avoided pandemic influenza from 1957-1961. Understanding this historical pandemic and the absence of high excess-mortality rates and transmissibility in Maricopa County may help public health officials prepare for and mitigate future outbreaks of influenza.
ContributorsCobos, April J (Author) / Jehn, Megan (Thesis director) / Chowell-Puente, Gerardo (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2015-05