Matching Items (120)
149830-Thumbnail Image.png
Description
The purpose of this study was to examine the impact of individualized afterschool tutoring, under federal Supplemental Educational Services (SES), on mathematical and general academic intrinsic motivation and mathematical achievement of at-risk students. The population of this study consisted of two third graders and five fourth graders from an elementary

The purpose of this study was to examine the impact of individualized afterschool tutoring, under federal Supplemental Educational Services (SES), on mathematical and general academic intrinsic motivation and mathematical achievement of at-risk students. The population of this study consisted of two third graders and five fourth graders from an elementary school in the Reynolds School District in Portland, Oregon. One participant was male. The other six were female. Six of the students were Hispanic, and one student was multiethnic. Students' parents enrolled their children in free afterschool tutoring with Mobile Minds Tutoring, an SES provider in the state of Oregon. The participants were given pre- and post-assessments to measure their intrinsic motivation and achievement. The third graders took the Young Children's Academic Intrinsic Motivation Inventory (Y-CAIMI) and the fourth graders took the Children's Academic Intrinsic Motivation Inventory (CAIMI). All students took the Group Mathematics Assessment and Diagnostic Evaluation (GMADE) according to their grade level. The findings from this study are consistent with the literature review, in that individualized tutoring can help increase student motivation and achievement. Six out of the seven students who participated in this study showed an increase in mathematical achievement, and four out of the seven showed an increase in intrinsic motivation.
ContributorsBallou, Cherise (Author) / Middleton, James (Thesis advisor) / Kinach, Barbara (Committee member) / Bitter, Gary (Committee member) / Arizona State University (Publisher)
Created2011
150254-Thumbnail Image.png
Description
Conceptual change has been a large part of science education research for several decades due to the fact that it allows teachers to think about what students' preconceptions are and how to change these to the correct scientific conceptions. To have students change their preconceptions teachers need to allow students

Conceptual change has been a large part of science education research for several decades due to the fact that it allows teachers to think about what students' preconceptions are and how to change these to the correct scientific conceptions. To have students change their preconceptions teachers need to allow students to confront what they think they know in the presence of the phenomena. Students then collect and analyze evidence pertaining to the phenomena. The goal in the end is for students to reorganize their concepts and change or correct their preconceptions, so that they hold more accurate scientific conceptions. The purpose of this study was to investigate how students' conceptions of the Earth's surface, specifically weathering and erosion, change using the conceptual change framework to guide the instructional decisions. The subjects of the study were a class of 25 seventh grade students. This class received a three-week unit on weathering and erosion that was structured using the conceptual change framework set by Posner, Strike, Hewson, and Gertzog (1982). This framework starts by looking at students' misconceptions, then uses scientific data that students collect to confront their misconceptions. The changes in students' conceptions were measured by a pre concept sketch and post concept sketch. The results of this study showed that the conceptual change framework can modify students' preconceptions of weathering and erosion to correct scientific conceptions. There was statistical significant difference between students' pre concept sketches and post concept sketches scores. After examining the concept sketches, differences were found in how students' concepts had changed from pre to post concept sketch. Further research needs to be done with conceptual change and the geosciences to see if conceptual change is an effective method to use to teach students about the geosciences.
ContributorsTillman, Ashley (Author) / Luft, Julie (Thesis advisor) / Middleton, James (Committee member) / Semken, Steven (Committee member) / Arizona State University (Publisher)
Created2011
150081-Thumbnail Image.png
Description
A fundamental motivation for this study was the underrepresentation of women in Science, Technology, Engineering and Mathematics careers. There is no doubt women and men can achieve at the same level in Mathematics, yet it is not clear why women are opting out. Adding race to the equation makes the

A fundamental motivation for this study was the underrepresentation of women in Science, Technology, Engineering and Mathematics careers. There is no doubt women and men can achieve at the same level in Mathematics, yet it is not clear why women are opting out. Adding race to the equation makes the underrepresentation more dramatic. Considering the important number of Latinos in the United States, especially in school age, it is relevant to find what reasons could be preventing them from participating in the careers mentioned. This study highlight the experiences young successful Latinas have in school Mathematics and how they shape their identities, to uncover potential conflicts that could later affect their participation in the field. In order to do so the author utilizes feminist approaches, Latino Critical Theory and Critical Race Theory to analyze the stories compiled. The participants were five successful Latinas in Mathematics, part of the honors track in a school in the Southwest of the United States. The theoretical lenses chosen allowed women of color to tell their story, highlighting the intersection of race, gender and socio-economical status as a factor shaping different schooling experiences. The author found that the participants distanced themselves from their home culture and from other girls at times to allow themselves to develop and maintain a successful identity as a Mathematics student. When talking about Latinos and their culture, the participants shared a view of themselves as proud Latinas who would prove others what Latinas can do. During other times while discussing the success of Latinos in Mathematics, they manifested Latinos were lazy and distance themselves from that stereotype. Similar examples about gender and Mathematics can be found in the study. The importance of the family as a motivator for their success was clear, despite the participants' concern that parents cannot offer certain types of help they feel they need. This was manifest in a tension regarding who owns the "right" Mathematics at home. Results showed that successful Latinas in the US may undergo a constant negotiation of conflicting discourses that force them to distance themselves from certain aspects of their culture, gender, and even their families, to maintain an identity of success in mathematics.
ContributorsGuerra Lombardi, Paula Patricia (Author) / Middleton, James (Thesis advisor) / Battey, Daniel (Committee member) / Koblitz, Ann (Committee member) / Flores, Alfinio (Committee member) / Arizona State University (Publisher)
Created2011
150087-Thumbnail Image.png
Description
Writing scientific explanations is increasingly important, and today's students must have the ability to navigate the writing process to create a persuasive scientific explanation. One aspect of the writing process is receiving feedback before submitting a final draft. This study examined whether middle school students benefit more in

Writing scientific explanations is increasingly important, and today's students must have the ability to navigate the writing process to create a persuasive scientific explanation. One aspect of the writing process is receiving feedback before submitting a final draft. This study examined whether middle school students benefit more in the writing process from receiving peer feedback or teacher feedback on rough drafts of scientific explanations. The study also looked at whether males and females reacted differently to the treatment groups. And it examined if content knowledge and the written scientific explanations were correlated. The study looked at 38 sixth and seventh-grade students throughout a 7-week earth science unit on earth systems. The unit had six lessons. One lesson introduced the students to writing scientific explanations, and the other five were inquiry-based content lessons. They wrote four scientific explanations throughout the unit of study and received feedback on all four rough drafts. The sixth-graders received teacher feedback on each explanation and the seventh-graders received peer-feedback after learning how to give constructive feedback. The students also took a multiple-choice pretest/posttest to evaluate content knowledge. The analyses showed that there was no significant difference between the group receiving peer feedback and the group receiving teacher feedback on the final drafts of the scientific explanations. There was, however, a significant effect of practice on the scores of the scientific explanations. Students wrote significantly better with each subsequent scientific explanation. There was no significant difference between males and females based on the treatment they received. There was a significant correlation between the gain in pretest to posttest scores and the scientific explanations and a significant correlation between the posttest scores and the scientific explanations. Content knowledge and written scientific explanations are related. Students who wrote scientific explanations had significant gains in content knowledge.
ContributorsLange, Katie (Author) / Baker, Dale (Thesis advisor) / Megowan, Colleen (Committee member) / Middleton, James (Committee member) / Arizona State University (Publisher)
Created2011
136400-Thumbnail Image.png
Description
The purpose of this paper is to provide a new and improved design method for the Formula Society of Automotive Engineering (FSAE) team. There are five tasks that I accomplish in this paper: 1. I describe how the FSAE team is currently designing their car. This allows the reader to

The purpose of this paper is to provide a new and improved design method for the Formula Society of Automotive Engineering (FSAE) team. There are five tasks that I accomplish in this paper: 1. I describe how the FSAE team is currently designing their car. This allows the reader to understand where the flaws might arise in their design method. 2. I then describe the key aspects of systems engineering design. This is the backbone of the method I am proposing, and it is important to understand the key concepts so that they can be applied to the FSAE design method. 3. I discuss what is available in the literature about race car design and optimization. I describe what other FSAE teams are doing and how that differs from systems engineering design. 4. I describe what the FSAE team at Arizona State University (ASU) should do to improve their approach to race car design. I go into detail about how the systems engineering method works and how it can and should be applied to the way they design their car. 5. I then describe how the team should implement this method because the method is useless if they do not implement it into their design process. I include an interview from their brakes team leader, Colin Twist, to give an example of their current method of design and show how it can be improved with the new method. This paper provides a framework for the FSAE team to develop their new method of design that will help them accomplish their overall goal of succeeding at the national competition.
ContributorsPickrell, Trevor Charles (Author) / Trimble, Steven (Thesis director) / Middleton, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
152349-Thumbnail Image.png
Description
As robots are increasingly migrating out of factories and research laboratories and into our everyday lives, they should move and act in environments designed for humans. For this reason, the need of anthropomorphic movements is of utmost importance. The objective of this thesis is to solve the inverse kinematics problem

As robots are increasingly migrating out of factories and research laboratories and into our everyday lives, they should move and act in environments designed for humans. For this reason, the need of anthropomorphic movements is of utmost importance. The objective of this thesis is to solve the inverse kinematics problem of redundant robot arms that results to anthropomorphic configurations. The swivel angle of the elbow was used as a human arm motion parameter for the robot arm to mimic. The swivel angle is defined as the rotation angle of the plane defined by the upper and lower arm around a virtual axis that connects the shoulder and wrist joints. Using kinematic data recorded from human subjects during every-day life tasks, the linear sensorimotor transformation model was validated and used to estimate the swivel angle, given the desired end-effector position. Defining the desired swivel angle simplifies the kinematic redundancy of the robot arm. The proposed method was tested with an anthropomorphic redundant robot arm and the computed motion profiles were compared to the ones of the human subjects. This thesis shows that the method computes anthropomorphic configurations for the robot arm, even if the robot arm has different link lengths than the human arm and starts its motion at random configurations.
ContributorsWang, Yuting (Author) / Artemiadis, Panagiotis (Thesis advisor) / Mignolet, Marc (Committee member) / Santos, Veronica J (Committee member) / Arizona State University (Publisher)
Created2013
151787-Thumbnail Image.png
Description
Electromyogram (EMG)-based control interfaces are increasingly used in robot teleoperation, prosthetic devices control and also in controlling robotic exoskeletons. Over the last two decades researchers have come up with a plethora of decoding functions to map myoelectric signals to robot motions. However, this requires a lot of training and validation

Electromyogram (EMG)-based control interfaces are increasingly used in robot teleoperation, prosthetic devices control and also in controlling robotic exoskeletons. Over the last two decades researchers have come up with a plethora of decoding functions to map myoelectric signals to robot motions. However, this requires a lot of training and validation data sets, while the parameters of the decoding function are specific for each subject. In this thesis we propose a new methodology that doesn't require training and is not user-specific. The main idea is to supplement the decoding functional error with the human ability to learn inverse model of an arbitrary mapping function. We have shown that the subjects gradually learned the control strategy and their learning rates improved. We also worked on identifying an optimized control scheme that would be even more effective and easy to learn for the subjects. Optimization was done by taking into account that muscles act in synergies while performing a motion task. The low-dimensional representation of the neural activity was used to control a two-dimensional task. Results showed that in the case of reduced dimensionality mapping, the subjects were able to learn to control the device in a slower pace, however they were able to reach and retain the same level of controllability. To summarize, we were able to build an EMG-based controller for robot devices that would work for any subject, without any training or decoding function, suggesting human-embedded controllers for robotic devices.
ContributorsAntuvan, Chris Wilson (Author) / Artemiadis, Panagiotis (Thesis advisor) / Muthuswamy, Jitendran (Committee member) / Santos, Veronica J (Committee member) / Arizona State University (Publisher)
Created2013
151790-Thumbnail Image.png
Description
In 2007, Arizona voters passed House Bill (HB) 2064, a law that fundamentally restructured the Structured English Immersion (SEI) program, putting into place a 4-hour English language development (ELD) block for educating English language learners (ELLs). Under this new language policy, ELL students are segregated from their English-speaking peers to

In 2007, Arizona voters passed House Bill (HB) 2064, a law that fundamentally restructured the Structured English Immersion (SEI) program, putting into place a 4-hour English language development (ELD) block for educating English language learners (ELLs). Under this new language policy, ELL students are segregated from their English-speaking peers to receive a minimum of four hours of instruction in discrete language skills with no contextual or native language support. Furthermore, ELD is separate from content-area instruction, meaning that language and mathematics are taught as two separate entities. While educators and researchers have begun to examine the organizational structure of the 4-hour block curriculum and implications for student learning, there is much to be understood about the extent to which this policy impacts ELLs opportunities to learn mathematics. Using ethnographic methods, this dissertation documents the beliefs and practices of four Arizona teachers in an effort to understand the relationship between language policy and teacher beliefs and practice and how together they coalesce to form learning environments for their ELL students, particularly in mathematics. The findings suggest that the 4-hour block created disparities in opportunities to learn mathematics for students in one Arizona district, depending on teachers' beliefs and the manner in which the policy was enacted, which was, in part, influenced by the State, district, and school. The contrast in cases exemplified the ways in which policy, which was enacted differently in the various classes, restricted teachers' practices, and in some cases resulted in inequitable opportunities to learn mathematics for ELLs.
ContributorsLlamas-Flores, Silvia (Author) / Middleton, James (Thesis advisor) / Battey, Daniel (Committee member) / Sloane, Finbarr (Committee member) / Macswan, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2013
151803-Thumbnail Image.png
Description
Humans have an inherent capability of performing highly dexterous and skillful tasks with their arms, involving maintaining posture, movement and interacting with the environment. The latter requires for them to control the dynamic characteristics of the upper limb musculoskeletal system. Inertia, damping and stiffness, a measure of mechanical impedance, gives

Humans have an inherent capability of performing highly dexterous and skillful tasks with their arms, involving maintaining posture, movement and interacting with the environment. The latter requires for them to control the dynamic characteristics of the upper limb musculoskeletal system. Inertia, damping and stiffness, a measure of mechanical impedance, gives a strong representation of these characteristics. Many previous studies have shown that the arm posture is a dominant factor for determining the end point impedance in a horizontal plane (transverse plane). The objective of this thesis is to characterize end point impedance of the human arm in the three dimensional (3D) space. Moreover, it investigates and models the control of the arm impedance due to increasing levels of muscle co-contraction. The characterization is done through experimental trials where human subjects maintained arm posture, while perturbed by a robot arm. Moreover, the subjects were asked to control the level of their arm muscles' co-contraction, using visual feedback of their muscles' activation, in order to investigate the effect of the muscle co-contraction on the arm impedance. The results of this study showed a very interesting, anisotropic increase of the arm stiffness due to muscle co-contraction. This can lead to very useful conclusions about the arm biomechanics as well as many implications for human motor control and more specifically the control of arm impedance through muscle co-contraction. The study finds implications for the EMG-based control of robots that physically interact with humans.
ContributorsPatel, Harshil Naresh (Author) / Artemiadis, Panagiotis (Thesis advisor) / Berman, Spring (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
151409-Thumbnail Image.png
Description
Recently there has been an increase in the number of people calling for the incorporation of relevant mathematics in the mathematics classroom. Unfortunately, various researchers define the term relevant mathematics differently, establishing several ideas of how relevancy can be incorporated into the classroom. The differences between mathematics education researchers' definitions

Recently there has been an increase in the number of people calling for the incorporation of relevant mathematics in the mathematics classroom. Unfortunately, various researchers define the term relevant mathematics differently, establishing several ideas of how relevancy can be incorporated into the classroom. The differences between mathematics education researchers' definitions of relevant and the way they believe relevant math should be implemented in the classroom, leads one to conclude that a similarly varied set of perspectives probably exists between teachers and students as well. The purpose of this exploratory study focuses on how the student and teacher perspectives on relevant mathematics in the classroom converge or diverge. Specifically, do teachers and students see the same lessons, materials, content, and approach as relevant? A survey was conducted with mathematics teachers at a suburban high school and their algebra 1 and geometry students to provide a general idea of their views on relevant mathematics. An analysis of the findings revealed three major differences: the discrepancy between frequency ratings of teachers and students, the differences between how teachers and students defined the term relevance and how the students' highest rated definitions were the least accounted for among the teacher generated questions, and finally the impact of differing attitudes towards mathematics on students' feelings towards its relevance.
ContributorsRedman, Alexandra P (Author) / Middleton, James (Thesis advisor) / Sloane, Finbarr (Committee member) / Blumenfeld-Jones, Donald (Committee member) / Arizona State University (Publisher)
Created2012