Matching Items (43)
Description
Earthquake faulting and the dynamics of subducting lithosphere are among the frontiers of geophysics. Exploring the nature, cause, and implications of geophysical phenomena requires multidisciplinary investigations focused at a range of spatial scales. Within this dissertation, I present studies of micro-scale processes using observational seismology and experimental mineral physics to

Earthquake faulting and the dynamics of subducting lithosphere are among the frontiers of geophysics. Exploring the nature, cause, and implications of geophysical phenomena requires multidisciplinary investigations focused at a range of spatial scales. Within this dissertation, I present studies of micro-scale processes using observational seismology and experimental mineral physics to provide important constraints on models for a range of large-scale geophysical phenomena within the crust and mantle.

The Great Basin (GB) in the western U.S. is part of the diffuse North American-Pacific plate boundary. The interior of the GB occasionally produces large earthquakes, yet the current distribution of regional seismic networks poorly samples it. The EarthScope USArray Transportable Array provides unprecedented station density and data quality for the central GB. I use this dataset to develop an earthquake catalog for the region that is complete to M 1.5. The catalog contains small-magnitude seismicity throughout the interior of the GB. The spatial distribution of earthquakes is consistent with recent regional geodetic studies, confirming that the interior of the GB is actively deforming everywhere and all the time. Additionally, improved event detection thresholds reveal that swarms of temporally-clustered repeating earthquakes occur throughout the GB. The swarms are not associated with active volcanism or other swarm triggering mechanisms, and therefore, may represent a common fault behavior.

Enstatite (Mg,Fe)SiO3 is the second most abundant mineral within subducting lithosphere. Previous studies suggest that metastable enstatite within subducting slabs may persist to the base of the mantle transition zone (MTZ) before transforming to high-pressure polymorphs. The metastable persistence of enstatite has been proposed as a potential cause for both deep-focus earthquakes and the stagnation of slabs at the base of the MTZ. I show that natural Al- and Fe-bearing enstatite reacts more readily than previous studies and by multiple transformation mechanisms at conditions as low as 1200°C and 18 GPa. Metastable enstatite is thus unlikely to survive to the base of the MTZ. Additionally, coherent growth of akimotoite and other high-pressure phases along polysynthetic twin boundaries provides a mechanism for the inheritance of crystallographic preferred orientation from previously deformed enstatite-bearing rocks within subducting slabs.
ContributorsLockridge, Jeffrey Steven (Author) / Sharp, Thomas (Thesis advisor) / Arrowsmith, Ramon (Thesis advisor) / Shim, Sang-Heon (Committee member) / Garnero, Edward (Committee member) / Leinenweber, Kurt (Committee member) / Arizona State University (Publisher)
Created2015
154183-Thumbnail Image.png
Description
Understanding topography developed above an active blind thrust fault is critical to quantifying the along-strike variability of the timing, magnitude, and rate of fault slip at depth. Hillslope and fluvial processes respond to growing topography such that the existing landscape is an indicator of constructional and destruction processes. Light detection

Understanding topography developed above an active blind thrust fault is critical to quantifying the along-strike variability of the timing, magnitude, and rate of fault slip at depth. Hillslope and fluvial processes respond to growing topography such that the existing landscape is an indicator of constructional and destruction processes. Light detection and ranging (lidar) data provide a necessary tool for fine-scale quantitative understanding of the topography to understand the tectonic evolution of blind thrust faulting. In this thesis, lidar topographic data collected in 2014 are applied to a well-studied laterally propagating anticline developed above a blind thrust fault in order to assess the geomorphic response of along-strike variations in tectonic deformation. Wheeler Ridge is an asymmetric east-propagating anticline (10 km axis, 330 m topographic relief) above a north-vergent blind thrust fault at the northern front of the Transverse Ranges, Southern San Joaquin Valley, California. Wheeler Ridge is part of a thrust system initiating in the late Miocene and is known to have significant historic earthquakes occur (e.g., 1952 Mw 7.3 Kern County earthquake). Analysis of the lidar data enables quantitative assessment of four key geomorphic relationships that may be indicative of relative variation in local rock uplift. First, I observe remnant landforms in the youngest, easternmost section of Wheeler Ridge that indicate the erosional history of older deposits to the west. Second, I examine the central portion of Wheeler Ridge where drainages and hillslopes are closely tied to uplift rates. Third, I observe the major wind gap within which a series of knickpoints are aligned at a similar elevation and tie into the local depositional and uplift history. Finally, I survey the western section and specifically, the fold backlimb where high-resolution topography and field mapping indicate long ridgelines that may preserve the uplifted and tilted alluvial fan morphology. I address changing landforms along the fold axis to test whether backlimb interfluves are paleosurfaces or the result of post-tectonic erosional hillslope processes. This work will be paired with future geochronology to update the ages of uplifted alluvial fan deposits and better constrain the timing of along-strike uplift of Wheeler Ridge.
ContributorsKleber, Emily (Author) / Arrowsmith, Ramon (Thesis advisor) / DeVecchio, Duane E (Committee member) / Whipple, Kelin X (Committee member) / Arizona State University (Publisher)
Created2015
156588-Thumbnail Image.png
Description
Worldwide, rivers and streams make up dense, interconnected conveyor belts of sediment– removing carved away earth and transporting it downstream. The propensity of alluvial river beds to self-organize into complex trains of bedforms (i.e. ripples and dunes) suggests that the associated fluid and sediment dynamics over individual bedforms are an

Worldwide, rivers and streams make up dense, interconnected conveyor belts of sediment– removing carved away earth and transporting it downstream. The propensity of alluvial river beds to self-organize into complex trains of bedforms (i.e. ripples and dunes) suggests that the associated fluid and sediment dynamics over individual bedforms are an integral component of bedload transport (sediment rolled or bounced along the river bed) over larger scales. Generally speaking, asymmetric bedforms (such as alluvial ripples and dunes) migrate downstream via erosion on the stoss side of the bedform and deposition on the lee side of the bedform. Thus, the migration of bedforms is intrinsically linked to the downstream flux of bedload sediment. Accurate quantification of bedload transport is important for the management of waters, civil engineering, and river restoration efforts. Although important, accurate qualification of bedload transport is a difficult task that continues t elude researchers. This dissertation focuses on improving our understanding and quantification of bedload transport on the two spatial scales: the bedform scale and the reach (~100m) scale.

Despite a breadth of work investigating the spatiotemporal details of fluid dynamics over bedforms and bedload transport dynamics over flat beds, there remains a relative dearth of investigations into the spatiotemporal details of bedload transport over bedforms and on a sub-bedform scale. To address this, we conducted two sets of flume experiments focused on the two fundamental regions of flow associated with bedforms: flow separation/reattachment on the lee side of the bedform (Chapter 1; backward facing-step) and flow reacceleration up the stoss side of the next bedform (Chapter 2; two-dimensional bedform). Using Laser and Acoustic Doppler Velocimetry to record fluid turbulent events and manual particle tracking of high-speed imagery to record bedload transport dynamics, we identified the existence and importance of “permeable splat events” in the region proximal to flow reattachment.

These coupled turbulent and sediment transport events are integral to the spatiotemporal pattern of bedload transport over bedforms. Splat events are localized, high magnitude, intermittent flow features in which fluid impinges on the bed, infiltrates the top portion of bed, and then exfiltrates in all directions surrounding the point of impingement. This initiates bedload transport in a radial pattern. These turbulent structures are primarily associated with quadrant 1 and 4 turbulent structures (i.e. instantaneous fluid fluctuations in the streamwise direction that bring fluid down into the bed in the case of quadrant 1 events, or up away from the bed in the case of quadrant 4 events) and generate a distinct pattern of bedload transport compared to transport dynamics distal to flow reattachment. Distal to flow reattachment, bedload transport is characterized by relatively unidirectional transport. The dynamics of splat events, specifically their potential for inducing significant magnitudes of cross-stream transport, has important implications for the evolution of bedforms from simple, two dimensional features to complex, three-dimensional features.

New advancements in sonar technology have enabled more detailed quantification of bedload transport on the reach scale, a process paramount to the effective management of rivers with sand or gravel-dominated bed material. However, a practical and scalable field methodology for reliably estimating bedload remains elusive. A popular approach involves calculating transport from the geometry and celerity of migrating bedforms, extracted from time-series of bed elevation profiles (BEPs) acquired using echosounders. Using two sets of repeat multibeam sonar surveys from the Diamond Creek USGS gage station in Grand Canyon National Park with large spatio-temporal resolution and coverage, we compute bedload using three field techniques for acquiring BEPs: repeat multi-, single-, and multiple single-beam sonar. Significant differences in flux arise between repeat multibeam and single beam sonar. Mulitbeam and multiple single beam sonar systems can potentially yield comparable results, but the latter relies on knowledge of bedform geometries and flow that collectively inform optimal beam spacing and sampling rate. These results serve to guide design of optimal sampling, and for comparing transport estimates from different sonar configurations.
ContributorsLeary, Kate (Author) / Schmeeckle, Mark W (Thesis advisor) / Whipple, Kelin X (Thesis advisor) / Heimsath, Arjun (Committee member) / Walker, Ian (Committee member) / Arrowsmith, Ramon (Committee member) / Arizona State University (Publisher)
Created2018
157478-Thumbnail Image.png
Description
East African extensional basins have played a crucial role in revealing the evolution and characteristics of the early stages of continental rifting and for providing the geological context of hominin evolution and innovation. The numerous volcanic eruptions, rapid sedimentation and burial, and subsequent exposure through faulting and erosion, provide excellent

East African extensional basins have played a crucial role in revealing the evolution and characteristics of the early stages of continental rifting and for providing the geological context of hominin evolution and innovation. The numerous volcanic eruptions, rapid sedimentation and burial, and subsequent exposure through faulting and erosion, provide excellent conditions for the preservation of tectonic history, paleoenvironment data, and vertebrate fossils. The reconstruction of depositional environments and provision of geochronologic frameworks for hominin sites have been largely provided by geologic investigations in conjunction with paleontological studies, like the Ledi-Geraru Research Project (LGRP). High-resolution paleoclimate records that can be directly linked to hominin fossil outcrops have been developed by the Hominin Sites and Paleolakes Drilling Project (HSPDP) which collected sedimentary-paleolake cores at or near key hominin fossil sites.

Two chapters of this dissertation are a result of research associated with the HSPDP. For HSPDP, I establish a tephrostratigraphic framework for the drill cores from the Northern Awash (Afar, Ethiopia) and Baringo-Tugen Hills-Barsemoi (Kenya) HSPDP sites. I characterize and fingerprint tephra through glass shard and feldspar phenocryst geochemistry. From tephra geochemical analyses, I establish chronostratigraphic ties between the HSPDP cores’ high-resolution paleoclimate records to outcrop stratigraphy which are associated with hominin fossils sites.

Three chapters of this dissertation are a result of field work with the LGRP. I report new geological investigations (stratigraphic, tectonic, and volcanic) of two previously unmapped regions from the eastern Ledi-Geraru (ELG), Asboli and Markaytoli. Building upon this research I present interpretations from tephra analyses, detailed stratigraphic analyses, and geologic mapping, of the Pleistocene (~2.6 to < 2.45 Ma) basin history for the LGRP. My work with the LGRP helps to reconstruct a more complete Early Pleistocene depositional and geologic history of the lower Awash Valley.

Overall, this dissertation contributes to the reconstruction of hominin paleoenvironments and the geochronological framework of the Pliocene and Pleistocene faunal/hominin records. It further contributes to rift basin history in East Africa by elaborating the later structural and stratigraphic history of the lower Awash region.
ContributorsGarello, Dominique Ines (Author) / Arrowsmith, Ramon (Thesis advisor) / Campisano, Chris J (Thesis advisor) / Reed, Kaye (Committee member) / Feary, David (Committee member) / Wittmann, Axel (Committee member) / Arizona State University (Publisher)
Created2019
Description
The study of fault zones is a critical component to understanding earthquake mechanics and seismic hazard evaluations. Models or simulations of potential earthquakes, based on fault zone properties, are a first step in mitigating the hazard. Theoretical models of earthquake ruptures along a bi-material interface result in asymmetrical damage and

The study of fault zones is a critical component to understanding earthquake mechanics and seismic hazard evaluations. Models or simulations of potential earthquakes, based on fault zone properties, are a first step in mitigating the hazard. Theoretical models of earthquake ruptures along a bi-material interface result in asymmetrical damage and preferred rupture propagation direction. Results include greater damage intensity within stiffer material and preferred slip in the direction of the more compliant side of the fault. Data from a dense seismic array along the Clark strand of the SJFZ at Sage Brush Flat (SGB) near Anza, CA, allows for analysis and characterization of shallow (<1km depth) seismic structure and fault zone properties. Results indicate potential asymmetric rock damage at SGB, similar to findings elsewhere along the SJFZ suggesting an NW preferred rupture propagation.

In this study, analysis of high resolution topography suggests asymmetric morphology of the SGB basin slopes are partially attributed to structural growth and fault zone damage. Spatial distributions of rock damage, from site mapping and fault perpendicular transects within SGB and Alkali Wash, are seemingly asymmetric with pulverization dominantly between fault strands or in the NE fault block. Remapping of the SJFZ through Alkali Wash indicates the fault is not isolated to a single strand along the main geologic boundary as previously mapped. Displacement measurements within SGB are analogous to those from the most recent large earthquake on the Clark fault. Geologic models from both a 3D shear wave velocity model (a product from the dense seismic array analysis) and lithologic and structural mapping from this study indicate surface observations and shallow seismic data compare well. A synthetic three-dimensional fault zone model illustrates the complexity of the structure at SGB for comparison with dense array seismic wave products. Results of this study generally agree with findings from seismic wave interpretations suggesting damage asymmetry is controlled by a NW preferred rupture propagation.
ContributorsWade, Adam Micahel (Author) / Arrowsmith, Ramon (Thesis advisor) / Reynolds, Stephen (Committee member) / DeVecchio, Duane (Committee member) / Arizona State University (Publisher)
Created2018
156926-Thumbnail Image.png
Description
Understanding changes and trends in biomedical knowledge is crucial for individuals, groups, and institutions as biomedicine improves people’s lives, supports national economies, and facilitates innovation. However, as knowledge changes what evidence illustrates knowledge changes? In the case of microbiome, a multi-dimensional concept from biomedicine, there are significant increases in publications,

Understanding changes and trends in biomedical knowledge is crucial for individuals, groups, and institutions as biomedicine improves people’s lives, supports national economies, and facilitates innovation. However, as knowledge changes what evidence illustrates knowledge changes? In the case of microbiome, a multi-dimensional concept from biomedicine, there are significant increases in publications, citations, funding, collaborations, and other explanatory variables or contextual factors. What is observed in the microbiome, or any historical evolution of a scientific field or scientific knowledge, is that these changes are related to changes in knowledge, but what is not understood is how to measure and track changes in knowledge. This investigation highlights how contextual factors from the language and social context of the microbiome are related to changes in the usage, meaning, and scientific knowledge on the microbiome. Two interconnected studies integrating qualitative and quantitative evidence examine the variation and change of the microbiome evidence are presented. First, the concepts microbiome, metagenome, and metabolome are compared to determine the boundaries of the microbiome concept in relation to other concepts where the conceptual boundaries have been cited as overlapping. A collection of publications for each concept or corpus is presented, with a focus on how to create, collect, curate, and analyze large data collections. This study concludes with suggestions on how to analyze biomedical concepts using a hybrid approach that combines results from the larger language context and individual words. Second, the results of a systematic review that describes the variation and change of microbiome research, funding, and knowledge are examined. A corpus of approximately 28,000 articles on the microbiome are characterized, and a spectrum of microbiome interpretations are suggested based on differences related to context. The collective results suggest the microbiome is a separate concept from the metagenome and metabolome, and the variation and change to the microbiome concept was influenced by contextual factors. These results provide insight into how concepts with extensive resources behave within biomedicine and suggest the microbiome is possibly representative of conceptual change or a preview of new dynamics within science that are expected in the future.
ContributorsAiello, Kenneth (Author) / Laubichler, Manfred D (Thesis advisor) / Simeone, Michael (Committee member) / Buetow, Kenneth (Committee member) / Walker, Sara I (Committee member) / Arizona State University (Publisher)
Created2018
156837-Thumbnail Image.png
Description
The movement between tectonic plates is accommodated through brittle (elastic) displacement on the plate boundary faults and ductile permanent deformation on the fault borderland. The elastic displacement along the fault can occur in the form of either large seismic events or aseismic slip, known as fault creep. Fault creep mainly

The movement between tectonic plates is accommodated through brittle (elastic) displacement on the plate boundary faults and ductile permanent deformation on the fault borderland. The elastic displacement along the fault can occur in the form of either large seismic events or aseismic slip, known as fault creep. Fault creep mainly occurs at the deep ductile portion of the crust, where the temperature is high. Nonetheless, aseismic creep can also occur on the shallow brittle portion of the fault segments that are characterized by frictionally weak material, elevated pore fluid pressure, or geometrical complexity. Creeping segments are assumed to safely release the accumulated strain(Kodaira et al., 2004; Rice, 1992)(Kodaira et al., 2004; Rice, 1992)(Kodaira et al., 2004; Rice, 1992)(Kodaira et al., 2004; Rice, 1992)(Kodaira et al., 2004; Rice, 1992) on the fault and also impede propagation of the seismic rupture. The rate of aseismic slip on creeping faults, however, might not be steady in time and instead consist of successive periods of acceleration and deceleration, known as slow slip events (SSEs). SSEs, which aseismically release the strain energy over a period of days to months, rather than the seconds to minutes characteristic of a typical earthquake, have been interpreted as earthquake precursors and as possible triggering factor for major earthquakes. Therefore, understanding the partitioning of seismic and aseismic fault slip and evolution of creep is fundamental to constraining the fault earthquake potential and improving operational seismic hazard models. Thanks to advances in tectonic geodesy, it is now possible to detect the fault movement in high spatiotemporal resolution and develop kinematic models of the creep evolution on the fault to determine the budget of seismic and aseismic slip.

In this dissertation, I measure the decades-long time evolution of fault-related crustal deformation along the San Andrea Fault in California and the northeast Japan subduction zone using space-borne geodetic techniques, such as Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR). The surface observation of deformation combined with seismic data set allow constraining the time series of creep distribution on the fault surface at seismogenic depth. The obtained time-dependent kinematic models reveal that creep in both study areas evolves through a series of SSEs, each lasting for several months. Using physics-based models informed by laboratory experiments, I show that the transient elevation of pore fluid pressure is the driving mechanism of SSEs. I further investigate the link between SSEs and evolution of seismicity on neighboring locked segments, which has implications for seismic hazard models and also provides insights into the pattern of microstructure on the fault surface. I conclude that while creeping segments act as seismic rupture barriers, SSEs on these zones might promote seismicity on adjacent seismogenic segments, thus change the short-term earthquake forecast.
ContributorsKhoshmanesh, Mostafa (Author) / Shirzaei, Manoochehr (Thesis advisor) / Arrowsmith, Ramon (Committee member) / Garnero, Edward (Committee member) / Tyburczy, James (Committee member) / Whipple, Kelin (Committee member) / Arizona State University (Publisher)
Created2018
Description
"On Music Videos" is an exploration of music videos, particularly narrative ones. As such, a brief history of the music video and its genres are examined. Ideas about narrative are also discussed through descriptions of what is meant by "story," based on theories from Pixar animators as well as author

"On Music Videos" is an exploration of music videos, particularly narrative ones. As such, a brief history of the music video and its genres are examined. Ideas about narrative are also discussed through descriptions of what is meant by "story," based on theories from Pixar animators as well as author J.R.R. Tolkien. The connections between how story fits with music videos is then outlined. From this background research one is able to analyze examples of existing narrative music videos, before applying this knowledge and reflecting on the process of creating a narrative music video.
ContributorsNguyen, Melissa M (Author) / Finn, Ed (Thesis director) / Simeone, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Art (Contributor) / School of Arts, Media and Engineering (Contributor)
Created2015-05
154514-Thumbnail Image.png
Description
In this dissertation, I study large-scale civic conversations where technology extends the range of “discourse visibility” beyond what human eyes and ears can meaningfully process without technical assistance. Analyzing government documents on digital innovation in government, emerging data activism practices, and large-scale civic conversations on social media, I advance a

In this dissertation, I study large-scale civic conversations where technology extends the range of “discourse visibility” beyond what human eyes and ears can meaningfully process without technical assistance. Analyzing government documents on digital innovation in government, emerging data activism practices, and large-scale civic conversations on social media, I advance a rhetoric for productively listening to democratic discourse as it is practiced in 2016. I propose practical strategies for how various governments—from the local to the United Nations international climate talks—might appropriately use technical interventions to assist civic dialogues and make civic decisions. Acknowledging that we must not lose the value that comes from face-to-face civic deliberation, I suggest practical pathways for how and when to use technology to increase democratic engagement from all stakeholders.
ContributorsSutherland, Alison (Author) / Adamson, Joni (Thesis advisor) / Long, Elenore (Committee member) / Simeone, Michael (Committee member) / Arizona State University (Publisher)
Created2016
154978-Thumbnail Image.png
Description
Silicic volcanoes produce many styles of activity over a range of timescales. Eruptions vary from slow effusion of viscous lava over many years to violent explosions lasting several hours. Hazards from these eruptions can be far-reaching and persistent, and are compounded by the dense populations often surrounding active volcanoes. I

Silicic volcanoes produce many styles of activity over a range of timescales. Eruptions vary from slow effusion of viscous lava over many years to violent explosions lasting several hours. Hazards from these eruptions can be far-reaching and persistent, and are compounded by the dense populations often surrounding active volcanoes. I apply and develop satellite and ground-based remote sensing techniques to document eruptions at Merapi and Sinabung Volcanoes in Indonesia. I use numerical models of volcanic activity in combination with my observational data to describe the processes driving different eruption styles, including lava dome growth and collapse, lava flow emplacement, and transitions between effusive and explosive activity.

Both effusive and explosive eruptions have occurred recently at Merapi volcano. I use satellite thermal images to identify variations during the 2006 effusive eruption and a numerical model of magma ascent to explain the mechanisms that controlled those variations. I show that a nearby tectonic earthquake may have triggered the peak phase of the eruption by increasing the overpressure and bubble content of the magma and that the frequency of pyroclastic flows is correlated with eruption rate. In 2010, Merapi erupted explosively but also shifted between rapid dome-building and explosive phases. I explain these variations by the heterogeneous addition of CO2 to the melt from bedrock under conditions favorable to transitions between effusive and explosive styles.

At Sinabung, I use photogrammetry and satellite images to describe the emplacement of a viscous lava flow. I calculate the flow volume (0.1 km3) and average effusion rate (4.4 m3 s-1) and identify active regions of collapse and advance. Advance rate was controlled by the effusion rate and the flow’s yield strength. Pyroclastic flow activity was initially correlated to the decreasing flow advance rate, but was later affected by the underlying topography as the flow inflated and collapsed near the vent, leading to renewed pyroclastic flow activity.

This work describes previously poorly understood mechanisms of silicic lava emplacement, including multiple causes of pyroclastic flows, and improves the understanding, monitoring capability, and hazard assessment of silicic volcanic eruptions.
ContributorsCarr, Brett B (Author) / Clarke, Amanda B (Thesis advisor) / Arrowsmith, Ramon (Committee member) / Mcnamara, Allen (Committee member) / Shirzaei, Manoochehr (Committee member) / Williams, Stanley (Committee member) / Arizona State University (Publisher)
Created2016