Matching Items (55)
152269-Thumbnail Image.png
Description
Sedimentary basins in the Afar Depression, Ethiopia archive the progression of continental breakup, record regional changes in east African climate and volcanism, and host what are arguably the most important fossiliferous strata for studying early human evolution and innovation. Significant changes in rift tectonics, climate, and faunal assemblages occur between

Sedimentary basins in the Afar Depression, Ethiopia archive the progression of continental breakup, record regional changes in east African climate and volcanism, and host what are arguably the most important fossiliferous strata for studying early human evolution and innovation. Significant changes in rift tectonics, climate, and faunal assemblages occur between 3-2.5 million years ago (Ma), but sediments spanning this time period are sparse. In this dissertation, I present the results of a geologic investigation targeting sediments between 3-2.5 Ma in the central and eastern Ledi Geraru (CLG and ELG) field areas in the lower Awash Valley, using a combination of geologic mapping, stratigraphy, and tephra chemistry and dating. At Gulfaytu in CLG, I mapped the northern-most outcrops of the hominin-bearing Hadar Formation (3.8-2.9 Ma), a 20 m-thick section of flat-lying lacustrine sediments containing 8 new tephras that directly overlie the widespread BKT-2 marker beds (2.95 Ma). Paleolake Hadar persisted after 2.95 Ma, and the presence and characteristics of the Busidima Formation (2.7-0.016 Ma) indicates Gulfaytu was affected by a reversal in depositional basin polarity. Combined with regional and geophysical data, I show the Hadar Formation underlying CLG is >300 m thick, supporting the hypothesis that it was the lower Awash Pliocene depocenter. At ELG, I mapped >300 m of sediments spanning 3.0-2.45 Ma. These sediments coarsen upward and show a progression from fluctuating lake conditions to fluvial landscapes and widespread soil development. This is consistent with the temporal change in depositional environments observed elsewhere in the lower Awash Valley, and suggests that these strata are correlative with the Hadar Formation. Furthermore, the strata and basalts at ELG are highly faulted, and overprinted by shifting extension directions attributed to the northern migration of the Afar triple junction. The presence of fossiliferous beds and stone tools makes ELG a high-priority target for anthropological and archaeological research. This study provides a new temporally-calibrated and high-resolution record of deposition, volcanism, and faulting patterns during a period of significant change in the Afar.
ContributorsDiMaggio, Erin Nicole (Author) / Arrowsmith, J Ramon (Thesis advisor) / Whipple, Kelin X (Committee member) / Heimsath, Arjun M (Committee member) / Clarke, Amanda B (Committee member) / Reed, Kaye E (Committee member) / Arizona State University (Publisher)
Created2013
152607-Thumbnail Image.png
Description
The Himalaya are the archetypal example of a continental collision belt, formed by the ongoing convergence between India and Eurasia. Boasting some of the highest and most rugged topography on Earth, there is currently no consensus on how climatic and tectonic processes have combined to shape its topographic evolution. The

The Himalaya are the archetypal example of a continental collision belt, formed by the ongoing convergence between India and Eurasia. Boasting some of the highest and most rugged topography on Earth, there is currently no consensus on how climatic and tectonic processes have combined to shape its topographic evolution. The Kingdom of Bhutan in the eastern Himalaya provides a unique opportunity to study the interconnections among Himalayan climate, topography, erosion, and tectonics. The eastern Himalaya are remarkably different from the rest of the orogen, most strikingly due to the presence of the Shillong Plateau to the south of the Himalayan rangefront. The tectonic structures associated with the Shillong Plateau have accommodated convergence between India and Eurasia and created a natural experiment to test the possible response of the Himalaya to a reduction in local shortening. In addition, the position and orientation of the plateau topography has intercepted moisture once bound for the Himalaya and created a natural experiment to test the possible response of the range to a reduction in rainfall. I focused this study around the gently rolling landscapes found in the middle of the otherwise extremely rugged Bhutan Himalaya, with the understanding that these landscapes likely record a recent change in the evolution of the range. I have used geochronometric, thermochronometric, and cosmogenic nuclide techniques, combined with thermal-kinematic and landscape evolution models to draw three primary conclusions. 1) The cooling histories of bedrock samples from the hinterland of the Bhutan Himalaya show a protracted decrease in erosion rate from the Middle Miocene toward the Pliocene. I have attributed this change to a reduction in shortening rates across the Himalayan mountain belt, due to increased accommodation of shortening across the Shillong Plateau. 2) The low-relief landscapes of Bhutan were likely created by backtilting and surface uplift produced by an active, blind, hinterland duplex. These landscapes were formed during surface uplift, which initiated ca. 1.5 Ma and has totaled 800 m. 3) Millennial-scale erosion rates are coupled with modern rainfall rates. Non-linear relationships between topographic metrics and erosion rates, suggest a fundamental difference in the mode of river incision within the drier interior of Bhutan and the wetter foothills.
ContributorsAdams, Byron A (Author) / Whipple, Kelin X (Thesis advisor) / Hodges, Kip V (Thesis advisor) / Heimsath, Arjun M (Committee member) / Arrowsmith, Ramon (Committee member) / Hurtado, Jose M (Committee member) / Arizona State University (Publisher)
Created2014
152556-Thumbnail Image.png
Description
Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that nearly half of Earth's

Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that nearly half of Earth's human population lives along active fault zones, a quantitative understanding of the mechanics of earthquakes and faulting is necessary to build accurate earthquake forecasts. My research relies on the quantitative documentation of the geomorphic expression of large earthquakes and the physical processes that control their spatiotemporal distributions. The first part of my research uses high-resolution topographic lidar data to quantitatively document the geomorphic expression of historic and prehistoric large earthquakes. Lidar data allow for enhanced visualization and reconstruction of structures and stratigraphy exposed by paleoseismic trenches. Lidar surveys of fault scarps formed by the 1992 Landers earthquake document the centimeter-scale erosional landforms developed by repeated winter storm-driven erosion. The second part of my research employs a quasi-static numerical earthquake simulator to explore the effects of fault roughness, friction, and structural complexities on earthquake-generated deformation. My experiments show that fault roughness plays a critical role in determining fault-to-fault rupture jumping probabilities. These results corroborate the accepted 3-5 km rupture jumping distance for smooth faults. However, my simulations show that the rupture jumping threshold distance is highly variable for rough faults due to heterogeneous elastic strain energies. Furthermore, fault roughness controls spatiotemporal variations in slip rates such that rough faults exhibit lower slip rates relative to their smooth counterparts. The central implication of these results lies in guiding the interpretation of paleoseismically derived slip rates that are used to form earthquake forecasts. The final part of my research evaluates a set of Earth science-themed lesson plans that I designed for elementary-level learning-disabled students. My findings show that a combination of concept delivery techniques is most effective for learning-disabled students and should incorporate interactive slide presentations, tactile manipulatives, teacher-assisted concept sketches, and student-led teaching to help learning-disabled students grasp Earth science concepts.
ContributorsHaddad, David Elias (Author) / Arrowsmith, Ramon (Thesis advisor) / Reynolds, Stephen (Committee member) / Semken, Steven (Committee member) / Shirzaei, Manoochehr (Committee member) / Whipple, Kelin (Committee member) / Zielke, Olaf (Committee member) / Arizona State University (Publisher)
Created2014
152633-Thumbnail Image.png
Description
The Himalayan orogenic system is one of the youngest and most spectacular examples of a continent-continent collision on earth. Although the collision zone has been the subject of extensive research, fundamental questions remain concerning the architecture and evolution of the orogen. Of particular interest are the structures surrounding the 5

The Himalayan orogenic system is one of the youngest and most spectacular examples of a continent-continent collision on earth. Although the collision zone has been the subject of extensive research, fundamental questions remain concerning the architecture and evolution of the orogen. Of particular interest are the structures surrounding the 5 km high Tibetan Plateau, as these features record both the collisional and post-collisional evolution of the orogen. In this study we examine structures along the southwestern margin of the Tibetan Plateau, including the Karakoram (KFS) and Longmu Co (LCF) faults, and the Ladakh, Pangong and Karakoram Ranges. New low-temperature thermochronology data collected from across the Ladakh, Pangong and Karakoram Ranges improved the spatial resolution of exhumation patterns adjacent to the edge of the plateau. These data show a southwest to northeast decrease in cooling ages, which is the trailing end of a wave of decreased exhumation related to changes in the overall amount of north-south shortening accommodated across the region. We also posit that north-south shortening is responsible for the orientation of the LCF in India. Previously, the southern end of the LCF was unmapped. We used ASTER remotely sensed images to create a comprehensive lithologic map of the region, which allowed us to map the LCF into India. This mapping shows that this fault has been rotated into parallelism with the Karakoram fault system as a result of N-S shortening and dextral shear on the KFS. Additionally, the orientation and sense of motion along these two systems implies that they are acting as a conjugate fault pair, allowing the eastward extrusion of the Tibet. Finally, we identify and quantify late Quaternary slip on the Tangtse strand of the KFS, which was previously believed to be inactive. Our study found that this fault strand accommodated ca. 6 mm/yr of slip over the last ca. 33-6 ka. Additionally, we speculate that slip is temporally partitioned between the two fault strands, implying that this part of the fault system is more complex than previously believed.
ContributorsBohon, Wendy (Author) / Arrowsmith, Ramon (Thesis advisor) / Hodges, Kip V (Thesis advisor) / Whipple, Kelin X (Committee member) / Heimsath, Arjun (Committee member) / Reynolds, Steven (Committee member) / Arizona State University (Publisher)
Created2014
152977-Thumbnail Image.png
Description
Climate and its influence on hydrology and weathering is a key driver of surface processes on Earth. Despite its clear importance to hazard generation, fluvial sediment transport and erosion, the drawdown of atmospheric CO2 via the rock cycle, and feedbacks between climate and tectonics, quantifying climatic controls on long-term erosion

Climate and its influence on hydrology and weathering is a key driver of surface processes on Earth. Despite its clear importance to hazard generation, fluvial sediment transport and erosion, the drawdown of atmospheric CO2 via the rock cycle, and feedbacks between climate and tectonics, quantifying climatic controls on long-term erosion rates has proven to be one of the grand problems in geomorphology. In fact, recent attempts addressing this problem using cosmogenic radionuclide (CRN) derived erosion rates suggest very weak climatic controls on millennial-scale erosion rates contrary to expectations. In this work, two challenges are addressed that may be impeding progress on this problem.

The first challenge is choosing appropriate climate metrics that are closely tied to erosional processes. For example, in fluvial landscapes, most runoff events do little to no geomorphic work due to erosion thresholds, and event-scale variability dictates how frequently these thresholds are exceeded. By analyzing dense hydroclimatic datasets in the contiguous U.S. and Puerto Rico, we show that event-scale runoff variability is only loosely related to event-scale rainfall variability. Instead, aridity and fractional evapotranspiration (ET) losses are much better predictors of runoff variability. Importantly, simple hillslope-scale soil water balance models capture major aspects of the observed relation between runoff variability and fractional ET losses. Together, these results point to the role of vegetation water use as a potential key to relating mean hydrologic partitioning with runoff variability.

The second challenge is that long-term erosion rates are expected to balance rock uplift rates as landscapes approach topographic steady state, regardless of hydroclimatic setting. This is illustrated with new data along the Main Gulf Escarpment, Baja, Mexico. Under this conceptual framework, climate is not expected to set the erosion rate, but rather the erosional efficiency of the system, or the steady-state relief required for erosion to keep up with tectonically driven uplift rates. To assess differences in erosional efficiency across landscapes experiencing different climatic regimes, we contrast new CRN data from tectonically active landscapes in Baja, Mexico and southern California (arid) with northern Honduras (very humid) alongside other published global data from similar hydroclimatic settings. This analysis shows how climate does, in fact, set functional relationships between topographic metrics like channel steepness and long-term erosion rates. However, we also show that relatively small differences in rock erodibility and incision thresholds can easily overprint hydroclimatic controls on erosional efficiency motivating the need for more field based constraints on these important variables.
ContributorsRossi, Matthew (Author) / Whipple, Kelin X (Thesis advisor) / DeVecchio, Duane E (Committee member) / Vivoni, Enrique R (Committee member) / Arrowsmith, J Ramon (Committee member) / Heimsath, Arjun M (Committee member) / Arizona State University (Publisher)
Created2014
152609-Thumbnail Image.png
Description
Quantifying the temporal and spatial evolution of active continental rifts contributes to our understanding of fault system evolution and seismic hazards. Rift systems also preserve robust paleoenvironmental records and are often characterized by strong climatic gradients that can be used to examine feedbacks between climate and tectonics. In this thesis,

Quantifying the temporal and spatial evolution of active continental rifts contributes to our understanding of fault system evolution and seismic hazards. Rift systems also preserve robust paleoenvironmental records and are often characterized by strong climatic gradients that can be used to examine feedbacks between climate and tectonics. In this thesis, I quantify the spatial and temporal history of rift flank uplift by analyzing bedrock river channel profiles along footwall escarpments in the Malawi segment of the East Africa Rift. This work addresses questions that are widely applicable to continental rift settings: (1) Is rift-flank uplift sufficiently described by theoretical elliptical along-fault displacement patterns? (2) Do orographic climate patterns induced by rift topography affect rift-flank uplift or morphology? (3) How do uplift patterns along rift flanks vary over geologic timescales? In Malawi, 100-km-long border faults of alternating polarity bound half-graben sedimentary basins containing up to 4km of basin fill and water depths up to 700m. Orographically driven precipitation produces climatic gradients along footwall escarpments resulting in mean annual rainfall that varies spatially from 800 to 2500 mm. Temporal oscillations in climate have also resulted in lake lowstands 500 m below the modern shoreline. I examine bedrock river profiles crossing the Livingstone and Usisya Border Faults in northern Malawi using the channel steepness index (Ksn) to assess importance of these conditions on rift flank evolution. River profiles reveal a consistent transient pattern that likely preserves a temporal record of slip and erosion along the entire border fault system. These profiles and other topographic observations, along with known modern and paleoenvironmental conditions, can be used to interpret a complete history of rift flank development from the onset of rifting to present. I interpret the morphology of the upland landscape to preserve the onset of extensional faulting across a relict erosion surface. The linkages of individual faults and acceleration of slip during the development of a continuous border fault is suggested by an analysis of knickpoint elevations and Ksn. Finally, these results suggest that the modern observed climate gradient only began to significantly affect denudation patterns once a high relief rift flank was established.
ContributorsRobinson, Scott M (Author) / Heimsath, Arjun M (Thesis advisor) / Whipple, Kelin X (Thesis advisor) / Arrowsmith, Ramon J (Committee member) / Arizona State University (Publisher)
Created2014
153024-Thumbnail Image.png
Description
Sedimentary basins are defined by extensional tectonics. Rugged mountain ranges stand in stark relief adjacent to muted structural basins filled with sediment. In simplest terms, this topography is the result of ranges uplifted along normal faults, and this uplift drives erosion within upland drainages, shedding sediment into subsiding basins. In

Sedimentary basins are defined by extensional tectonics. Rugged mountain ranges stand in stark relief adjacent to muted structural basins filled with sediment. In simplest terms, this topography is the result of ranges uplifted along normal faults, and this uplift drives erosion within upland drainages, shedding sediment into subsiding basins. In southeastern Arizona's Basin and Range province extensional tectonics waned at approximately 3-5 Myr, and the region's structural basins began transitioning from internal to external drainage, forming the modern Gila River fluvial network. In the Atacama Desert of northern Chile, some basins of the Central Depression remain internally drained while others have integrated to the Pacific Ocean. In northern Chile, rates of landscape evolution are some of the slowest on Earth due to the region's hyperarid climate. While the magnitude of upland erosion driven by extensional tectonics is largely recorded in the stratigraphy of the structural basins, the landscape's response to post-tectonic forcings is unknown.

I employ the full suite of modern geomorphic tools provided by terrestrial cosmogenic nuclides - surface exposure dating, conventional burial dating, isochron burial dating, quantifying millennial-scale upland erosion rates using detrital TCN, quantifying paleo-erosion rates using multiple TCN such as Ne-21/Be-10 and Al-26l/Be-10, and assessing sediment recycling and complex exposure using multiple TCN - to quantify the rates of landscape evolution in southeastern Arizona and northern Chile during the Late Cenozoic. In Arizona, I also use modern remnants of the pre-incision landscape and digital terrain analyses to reconstruct the landscape, allowing the quantification of incision and erosion rates that supplement detrital TCN-derived erosion rates. A new chronology for key basin high stand remnants (Frye Mesa) and a flight of Gila River terraces in Safford basin provides a record of incision rates from the Pliocene through the Quaternary, and I assess how significantly regional incision is driving erosion rates. Paired nuclide analyses in the Atacama Desert of northern Chile reveal complex exposure histories resulting from several rounds of transport and burial by fluvial systems. These results support a growing understanding that geomorphic processes in the Atacama Desert are more active than previously thought despite the region's hyperarid climate.
ContributorsJungers, Matthew Cross (Author) / Heimsath, Arjun M (Thesis advisor) / Whipple, Kelin (Committee member) / Arrowsmith, Ramon (Committee member) / Vivoni, Enrique (Committee member) / DeVecchio, Duane (Committee member) / Arizona State University (Publisher)
Created2014
149701-Thumbnail Image.png
Description
Geoscience educators commonly teach geology by projecting a photograph in front of the class. Geologic photographs often contain animals, people, and inanimate objects that help convey the scale of features in the photograph. Although scale items seem innocuous to instructors and other experts, the presence of such items is distracting

Geoscience educators commonly teach geology by projecting a photograph in front of the class. Geologic photographs often contain animals, people, and inanimate objects that help convey the scale of features in the photograph. Although scale items seem innocuous to instructors and other experts, the presence of such items is distracting and has a profound effect on student learning behavior. To evaluate how students visually interact with distracting scale items in photographs and to determine if cueing or signaling is an effective means to direct students to pertinent information, students were eye tracked while looking at geologically-rich photographs. Eye-tracking data revealed that learners primarily looked at the center of an image, focused on faces of both humans and animals if they were present, and repeatedly returned to looking at the scale item (distractor) for the duration an image was displayed. The presence of a distractor caused learners to look at less of an image than when a distractor was not present. Learners who received signaling tended to look at the distractor less, look at the geology more, and surveyed more of the photograph than learners who did not receive signaling. The San Antonio area in the southern part of the Baja California Peninsula is host to hydrothermal gold deposits. A field study, including drill-core analysis and detailed geologic mapping, was conducted to determine the types of mineralization present, the types of structures present, and the relationship between the two. This investigation revealed that two phases of mineralization have occurred in the area; the first is hydrothermal deposition of gold associated with sulfide deposits and the second is oxidation of sulfides to hematite, goethite, and jarosite. Mineralization varies as a function of depth, whereas sulfides occurring at depth, while minerals indicative of oxidation are limited to shallow depths. A structural analysis revealed that the oldest structures in the study area include low-grade to medium-grade metamorphic foliation and ductile mylonitic shear zones overprinted by brittle-ductile mylonitic fabrics, which were later overprinted by brittle deformation. Both primary and secondary mineralization in the area is restricted to the later brittle features. Alteration-bearing structures have an average NNW strike consistent with northeast-southwest-directed extension, whereas unaltered structures have an average NNE strike consistent with more recent northwest-southeast-directed extension.
ContributorsCoyan, Joshua (Author) / Reynolds, Stephen (Thesis advisor) / Arrowsmith, Ramon (Committee member) / Chi, Michelene (Committee member) / Piburn, Michael (Committee member) / Semken, Steven (Committee member) / Arizona State University (Publisher)
Created2011
149711-Thumbnail Image.png
Description
An array of north-striking, left-stepping, active normal faults is situated along the southwestern margin of the Gulf of California. This normal fault system is the marginal fault system of the oblique-divergent plate boundary within the Gulf of California. To better understand the role of upper-crustal processes during development of an

An array of north-striking, left-stepping, active normal faults is situated along the southwestern margin of the Gulf of California. This normal fault system is the marginal fault system of the oblique-divergent plate boundary within the Gulf of California. To better understand the role of upper-crustal processes during development of an obliquely rifted plate margin, gravity surveys were conducted across the normal-fault-bounded basins within the gulf-margin array and, along with optically stimulated luminescence dating of offset surfaces, fault-slip rates were estimated and fault patterns across basins were assessed, providing insight into sedimentary basin evolution. Additionally, detailed geologic and geomorphic maps were constructed along two faults within the system, leading to a more complete understanding of the role of individual normal faults within a larger array. These faults slip at a low rate (0.1-1 mm/yr) and have relatively shallow hanging wall basins (~500-3000 m). Overall, the gulf-margin faults accommodate protracted, distributed deformation at a low rate and provide a minor contribution to overall rifting. Integrating figures with text can lead to greater science learning than when either medium is presented alone. Textbooks, composed of text and graphics, are a primary source of content in most geology classes. It is essential to understand how students approach learning from text and figures in textbook-style learning materials and how the arrangement of the text and figures influences their learning approach. Introductory geology students were eye tracked while learning from textbook-style materials composed of text and graphics. Eye fixation data showed that students spent less time examining the figure than the text, but the students who more frequently examined the figure tended to improve more from the pretest to the posttest. In general, students tended to examine the figure at natural breaks in the reading. Textbook-style materials should, therefore, be formatted to include a number of natural breaks so that learners can pause to inspect the figure without the risk of losing their place in the reading and to provide a chance to process the material in small chunks. Multimedia instructional materials should be designed to support the cognitive processes of the learner.
ContributorsBusch, Melanie M. D (Author) / Arrowsmith, Ramon (Thesis advisor) / Reynolds, Stephen (Thesis advisor) / Chi, Michelene (Committee member) / Semken, Steven (Committee member) / Tyburczy, James (Committee member) / Arizona State University (Publisher)
Created2011
150066-Thumbnail Image.png
Description
The San Andreas Fault (SAF) is the primary structure within a system of faults accommodating motion between the North American and Pacific plates. Physical models of faulting and characterizations of seismic hazard are informed by investigations of paleoseismology, slip distribution, and slip rate. The impact of earthquakes on people is

The San Andreas Fault (SAF) is the primary structure within a system of faults accommodating motion between the North American and Pacific plates. Physical models of faulting and characterizations of seismic hazard are informed by investigations of paleoseismology, slip distribution, and slip rate. The impact of earthquakes on people is due in large part to social vulnerability. This dissertation contributes an analysis about the relationships between earthquake hazard and social vulnerability in Los Angeles, CA and investigations of paleoseismology and fault scarp array complexity on the central SAF. Analysis of fault scarp array geometry and morphology using 0.5 m digital elevation models along 122 km of the central SAF reveals significant variation in the complexity of SAF structure. Scarp trace complexity is measured by scarp separation, changes in strike, fault trace gaps, and scarp length per SAF kilometer. Geometrical complexity in fault scarp arrays indicates that the central SAF can be grouped into seven segments. Segment boundaries are controlled by interactions with subsidiary faults. Investigation of an offset channel at Parkfield, CA yields a late Holocene slip rate of 26.2 +6.4/- 4.3 mm/yr. This rate is lower than geologic measurements on the Carrizo section of the SAF and rates implied by far-field geodesy. However, it is consistent with historical observations of slip at Parkfield. Paleoseismology at Parkfield indicates that large earthquakes are absent from the stratigraphic record for at least a millennia. Together these observations imply that the amount of plate boundary slip accommodated by the main SAF varies along strike. Contrary to most environmental justice analyses showing that vulnerable populations are spatially-tied to environmental hazards, geospatial analyses relating social vulnerability and earthquake hazard in southern California show that these groups are not disproportionately exposed to the areas of greatest hazard. Instead, park and green space is linked to earthquake hazard through fault zone regulation. In Los Angeles, a parks poor city, the distribution of social vulnerability is strongly tied to a lack of park space. Thus, people with access to financial and political resources strive to live in neighborhoods with parks, even in the face of forewarned risk.
ContributorsToké, Nathan A (Author) / Arrowsmith, J R (Thesis advisor) / Boone, Christopher G (Committee member) / Heimsath, Arjun M (Committee member) / Shock, Everett L (Committee member) / Whipple, Kelin X (Committee member) / Arizona State University (Publisher)
Created2011