Matching Items (62)
152073-Thumbnail Image.png
Description
The effect of earthquake-induced liquefaction on the local void ratio distribution of cohesionless soil is evaluated using x-ray computed tomography (CT) and an advanced image processing software package. Intact, relatively undisturbed specimens of cohesionless soil were recovered before and after liquefaction by freezing and coring soil deposits created by pluviation

The effect of earthquake-induced liquefaction on the local void ratio distribution of cohesionless soil is evaluated using x-ray computed tomography (CT) and an advanced image processing software package. Intact, relatively undisturbed specimens of cohesionless soil were recovered before and after liquefaction by freezing and coring soil deposits created by pluviation and by sedimentation through water. Pluviated soil deposits were liquefied in the small geotechnical centrifuge at the University of California at Davis shared-use National Science Foundation (NSF)-supported Network for Earthquake Engineering Simulation (NEES) facility. A soil deposit created by sedimentation through water was liquefied on a small shake table in the Arizona State University geotechnical laboratory. Initial centrifuge tests employed Ottawa 20-30 sand but this material proved to be too coarse to liquefy in the centrifuge. Therefore, subsequent centrifuge tests employed Ottawa F60 sand. The shake table test employed Ottawa 20-30 sand. Recovered cores were stabilized by impregnation with optical grade epoxy and sent to the University of Texas at Austin NSF-supported facility at the University of Texas at Austin for high-resolution CT scanning of geologic media. The local void ratio distribution of a CT-scanned core of Ottawa 20-30 sand evaluated using Avizo® Fire, a commercially available advanced program for image analysis, was compared to the local void ratio distribution established on the same core by analysis of optical images to demonstrate that analysis of the CT scans gave similar results to optical methods. CT scans were subsequently conducted on liquefied and not-liquefied specimens of Ottawa 20-30 sand and Ottawa F60 sand. The resolution of F60 specimens was inadequate to establish the local void ratio distribution. Results of the analysis of the Ottawa 20-30 specimens recovered from the model built for the shake table test showed that liquefaction can substantially influence the variability in local void ratio, increasing the degree of non-homogeneity in the specimen.
ContributorsGutierrez, Angel (Author) / Kavazanjian, Edward (Thesis advisor) / Houston, Sandra (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2013
152586-Thumbnail Image.png
Description
The computation of the fundamental mode in structural moment frames provides valuable insight into the physical response of the frame to dynamic or time-varying loads. In standard practice, it is not necessary to solve for all n mode shapes in a structural system; it is therefore practical to limit the

The computation of the fundamental mode in structural moment frames provides valuable insight into the physical response of the frame to dynamic or time-varying loads. In standard practice, it is not necessary to solve for all n mode shapes in a structural system; it is therefore practical to limit the system to some determined number of r significant mode shapes. Current building codes, such as the American Society of Civil Engineers (ASCE), require certain class of structures to obtain 90% effective mass participation as a way to estimate the accuracy of a solution for base shear motion. A parametric study was performed from the collected data obtained by the analysis of a large number of framed structures. The purpose of this study was the development of rules for the required number of r significant modes to meet the ASCE code requirements. The study was based on the implementation of an algorithm and a computer program developed in the past. The algorithm is based on Householders Transformations, QR Factorization, and Inverse Iteration and it extracts a requested s (s<< n) number of predominate mode shapes and periods. Only the first r (r < s) of these modes are accurate. To verify the accuracy of the algorithm a variety of building frames have been analyzed using the commercially available structural software (RISA 3D) as a benchmark. The salient features of the algorithm are presented briefly in this study.
ContributorsGrantham, Jonathan (Author) / Fafitis, Apostolos (Thesis advisor) / Attard, Thomas (Committee member) / Houston, Sandra (Committee member) / Hjelmstad, Keith (Committee member) / Arizona State University (Publisher)
Created2014
152596-Thumbnail Image.png
Description
This thesis presents a probabilistic evaluation of multiple laterally loaded drilled pier foundation design approaches using extensive data from a geotechnical investigation for a high voltage electric transmission line. A series of Monte Carlo simulations provide insight about the computed level of reliability considering site standard penetration test blow count

This thesis presents a probabilistic evaluation of multiple laterally loaded drilled pier foundation design approaches using extensive data from a geotechnical investigation for a high voltage electric transmission line. A series of Monte Carlo simulations provide insight about the computed level of reliability considering site standard penetration test blow count value variability alone (i.e., assuming all other aspects of the design problem do not contribute error or bias). Evaluated methods include Eurocode 7 Geotechnical Design procedures, the Federal Highway Administration drilled shaft LRFD design method, the Electric Power Research Institute transmission foundation design procedure and a site specific variability based approach previously suggested by the author of this thesis and others. The analysis method is defined by three phases: a) Evaluate the spatial variability of an existing subsurface database. b) Derive theoretical foundation designs from the database in accordance with the various design methods identified. c) Conduct Monti Carlo Simulations to compute the reliability of the theoretical foundation designs. Over several decades, reliability-based foundation design (RBD) methods have been developed and implemented to varying degrees for buildings, bridges, electric systems and other structures. In recent years, an effort has been made by researchers, professional societies and other standard-developing organizations to publish design guidelines, manuals and standards concerning RBD for foundations. Most of these approaches rely on statistical methods for quantifying load and resistance probability distribution functions with defined reliability levels. However, each varies with regard to the influence of site-specific variability on resistance. An examination of the influence of site-specific variability is required to provide direction for incorporating the concept into practical RBD design methods. Recent surveys of transmission line engineers by the Electric Power Research Institute (EPRI) demonstrate RBD methods for the design of transmission line foundations have not been widely adopted. In the absence of a unifying design document with established reliability goals, transmission line foundations have historically performed very well, with relatively few failures. However, such a track record with no set reliability goals suggests, at least in some cases, a financial premium has likely been paid.
ContributorsHeim, Zackary (Author) / Houston, Sandra (Thesis advisor) / Witczak, Matthew (Committee member) / Kavazanjian, Edward (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2014
152607-Thumbnail Image.png
Description
The Himalaya are the archetypal example of a continental collision belt, formed by the ongoing convergence between India and Eurasia. Boasting some of the highest and most rugged topography on Earth, there is currently no consensus on how climatic and tectonic processes have combined to shape its topographic evolution. The

The Himalaya are the archetypal example of a continental collision belt, formed by the ongoing convergence between India and Eurasia. Boasting some of the highest and most rugged topography on Earth, there is currently no consensus on how climatic and tectonic processes have combined to shape its topographic evolution. The Kingdom of Bhutan in the eastern Himalaya provides a unique opportunity to study the interconnections among Himalayan climate, topography, erosion, and tectonics. The eastern Himalaya are remarkably different from the rest of the orogen, most strikingly due to the presence of the Shillong Plateau to the south of the Himalayan rangefront. The tectonic structures associated with the Shillong Plateau have accommodated convergence between India and Eurasia and created a natural experiment to test the possible response of the Himalaya to a reduction in local shortening. In addition, the position and orientation of the plateau topography has intercepted moisture once bound for the Himalaya and created a natural experiment to test the possible response of the range to a reduction in rainfall. I focused this study around the gently rolling landscapes found in the middle of the otherwise extremely rugged Bhutan Himalaya, with the understanding that these landscapes likely record a recent change in the evolution of the range. I have used geochronometric, thermochronometric, and cosmogenic nuclide techniques, combined with thermal-kinematic and landscape evolution models to draw three primary conclusions. 1) The cooling histories of bedrock samples from the hinterland of the Bhutan Himalaya show a protracted decrease in erosion rate from the Middle Miocene toward the Pliocene. I have attributed this change to a reduction in shortening rates across the Himalayan mountain belt, due to increased accommodation of shortening across the Shillong Plateau. 2) The low-relief landscapes of Bhutan were likely created by backtilting and surface uplift produced by an active, blind, hinterland duplex. These landscapes were formed during surface uplift, which initiated ca. 1.5 Ma and has totaled 800 m. 3) Millennial-scale erosion rates are coupled with modern rainfall rates. Non-linear relationships between topographic metrics and erosion rates, suggest a fundamental difference in the mode of river incision within the drier interior of Bhutan and the wetter foothills.
ContributorsAdams, Byron A (Author) / Whipple, Kelin X (Thesis advisor) / Hodges, Kip V (Thesis advisor) / Heimsath, Arjun M (Committee member) / Arrowsmith, Ramon (Committee member) / Hurtado, Jose M (Committee member) / Arizona State University (Publisher)
Created2014
152556-Thumbnail Image.png
Description
Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that nearly half of Earth's

Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that nearly half of Earth's human population lives along active fault zones, a quantitative understanding of the mechanics of earthquakes and faulting is necessary to build accurate earthquake forecasts. My research relies on the quantitative documentation of the geomorphic expression of large earthquakes and the physical processes that control their spatiotemporal distributions. The first part of my research uses high-resolution topographic lidar data to quantitatively document the geomorphic expression of historic and prehistoric large earthquakes. Lidar data allow for enhanced visualization and reconstruction of structures and stratigraphy exposed by paleoseismic trenches. Lidar surveys of fault scarps formed by the 1992 Landers earthquake document the centimeter-scale erosional landforms developed by repeated winter storm-driven erosion. The second part of my research employs a quasi-static numerical earthquake simulator to explore the effects of fault roughness, friction, and structural complexities on earthquake-generated deformation. My experiments show that fault roughness plays a critical role in determining fault-to-fault rupture jumping probabilities. These results corroborate the accepted 3-5 km rupture jumping distance for smooth faults. However, my simulations show that the rupture jumping threshold distance is highly variable for rough faults due to heterogeneous elastic strain energies. Furthermore, fault roughness controls spatiotemporal variations in slip rates such that rough faults exhibit lower slip rates relative to their smooth counterparts. The central implication of these results lies in guiding the interpretation of paleoseismically derived slip rates that are used to form earthquake forecasts. The final part of my research evaluates a set of Earth science-themed lesson plans that I designed for elementary-level learning-disabled students. My findings show that a combination of concept delivery techniques is most effective for learning-disabled students and should incorporate interactive slide presentations, tactile manipulatives, teacher-assisted concept sketches, and student-led teaching to help learning-disabled students grasp Earth science concepts.
ContributorsHaddad, David Elias (Author) / Arrowsmith, Ramon (Thesis advisor) / Reynolds, Stephen (Committee member) / Semken, Steven (Committee member) / Shirzaei, Manoochehr (Committee member) / Whipple, Kelin (Committee member) / Zielke, Olaf (Committee member) / Arizona State University (Publisher)
Created2014
152633-Thumbnail Image.png
Description
The Himalayan orogenic system is one of the youngest and most spectacular examples of a continent-continent collision on earth. Although the collision zone has been the subject of extensive research, fundamental questions remain concerning the architecture and evolution of the orogen. Of particular interest are the structures surrounding the 5

The Himalayan orogenic system is one of the youngest and most spectacular examples of a continent-continent collision on earth. Although the collision zone has been the subject of extensive research, fundamental questions remain concerning the architecture and evolution of the orogen. Of particular interest are the structures surrounding the 5 km high Tibetan Plateau, as these features record both the collisional and post-collisional evolution of the orogen. In this study we examine structures along the southwestern margin of the Tibetan Plateau, including the Karakoram (KFS) and Longmu Co (LCF) faults, and the Ladakh, Pangong and Karakoram Ranges. New low-temperature thermochronology data collected from across the Ladakh, Pangong and Karakoram Ranges improved the spatial resolution of exhumation patterns adjacent to the edge of the plateau. These data show a southwest to northeast decrease in cooling ages, which is the trailing end of a wave of decreased exhumation related to changes in the overall amount of north-south shortening accommodated across the region. We also posit that north-south shortening is responsible for the orientation of the LCF in India. Previously, the southern end of the LCF was unmapped. We used ASTER remotely sensed images to create a comprehensive lithologic map of the region, which allowed us to map the LCF into India. This mapping shows that this fault has been rotated into parallelism with the Karakoram fault system as a result of N-S shortening and dextral shear on the KFS. Additionally, the orientation and sense of motion along these two systems implies that they are acting as a conjugate fault pair, allowing the eastward extrusion of the Tibet. Finally, we identify and quantify late Quaternary slip on the Tangtse strand of the KFS, which was previously believed to be inactive. Our study found that this fault strand accommodated ca. 6 mm/yr of slip over the last ca. 33-6 ka. Additionally, we speculate that slip is temporally partitioned between the two fault strands, implying that this part of the fault system is more complex than previously believed.
ContributorsBohon, Wendy (Author) / Arrowsmith, Ramon (Thesis advisor) / Hodges, Kip V (Thesis advisor) / Whipple, Kelin X (Committee member) / Heimsath, Arjun (Committee member) / Reynolds, Steven (Committee member) / Arizona State University (Publisher)
Created2014
152724-Thumbnail Image.png
Description
ABSTRACT Enzyme-Induced Carbonate Precipitation (EICP) using a plant-derived form of the urease enzyme to induce the precipitation of calcium carbonate (CaCO3) shows promise as a method of stabilizing soil for the mitigation of fugitive dust. Fugitive dust is a significant problem in Arizona, particularly in Maricopa County. Maricopa County is

ABSTRACT Enzyme-Induced Carbonate Precipitation (EICP) using a plant-derived form of the urease enzyme to induce the precipitation of calcium carbonate (CaCO3) shows promise as a method of stabilizing soil for the mitigation of fugitive dust. Fugitive dust is a significant problem in Arizona, particularly in Maricopa County. Maricopa County is an EPA air quality non-attainment zone, due primarily to fugitive dust, which presents a significant health risk to local residents. Conventional methods for fugitive dust control, including the application of water, are either ineffective in arid climates, very expensive, or limited to short term stabilization. Due to these limitations, engineers are searching for new and more effective ways to stabilize the soil and reduce wind erosion. EICP employs urea hydrolysis, a process in which carbonate precipitation is catalyzed by the urease enzyme, a widely occurring protein found in many plants and microorganisms. Wind tunnel experiments were conducted in the ASU/NASA Planetary Wind Tunnel to evaluate the use of EICP as a means to stabilize soil against fugitive dust emission. Three different soils were tested, including a native Arizona silty-sand, a uniform fine to medium grained silica sand, and mine tailings from a mine in southern Arizona. The test soil was loosely placed in specimen container and the surface was sprayed with an aqueous solution containing urea, calcium chloride, and urease enzyme. After a short period of time to allow for CaCO3 precipitation, the specimens were tested in the wind tunnel. The completed tests show that EICP can increase the detachment velocity compared to bare or wetted soil and thus holds promise as a means of mitigating fugitive dust emissions.
ContributorsKnorr, Brian (Author) / Kavazanjian, Edward (Thesis advisor) / Houston, Sandra (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2014
152792-Thumbnail Image.png
Description
Expansive soils impose challenges on the design, maintenance and long-term stability of many engineered infrastructure. These soils are composed of different clay minerals that are susceptible to changes in moisture content. Expansive clay soils wreak havoc due to their volume change property and, in many cases, exhibit extreme swelling and

Expansive soils impose challenges on the design, maintenance and long-term stability of many engineered infrastructure. These soils are composed of different clay minerals that are susceptible to changes in moisture content. Expansive clay soils wreak havoc due to their volume change property and, in many cases, exhibit extreme swelling and shrinking potentials. Understanding what type of minerals and clays react in the presence of water would allow for a more robust design and a better way to mitigate undesirable soil volume change. The relatively quick and widely used method of X-ray Diffraction (XRD) allows identifying the type of minerals present in the soil. As part of this study, three different clays from Colorado, San Antonio Texas, and Anthem Arizona were examined using XRD techniques. Oedometer-type testing was simultaneously preformed in the laboratory to benchmark the behavior of these soils. This analysis allowed performing comparative studies to determining if the XRD technique and interpretation methods currently available could serve as quantitative tools for estimating swell potential through mineral identification. The soils were analyzed using two different software protocols after being subjected to different treatment techniques. Important observations include the formation of Ettringite and Thaumasite, the effect of mixed-layer clays in the interpretation of the data, and the soils being subject to Gypsification. The swelling data obtained from the oedometer-type laboratory testing was compared with predictive swelling functions available from literature. A correlation analysis was attempted in order to find what index properties and mineralogy parameters were most significant to the swelling behavior of the soils. The analysis demonstrated that Gypsification is as important to the swelling potential of the soil as the presence of expansive clays; and it should be considered in the design and construction of structures in expansive soils. Also, the formation of Ettringite and Thaumasite observed during the treatment process validates the evidence of Delayed Ettringite Formation (DEF) reported in the literature. When comparing the measured results with a proposed method from the University of Texas at Arlington (UTA), it was found that the results were somewhat indicative of swell potential but did not explain all causes for expansivity. Finally, it was found that single index properties are not sufficient to estimate the free swell or the swell pressure of expansive soils. In order to have a significant correlation, two or more index properties should be combined when estimating the swell potential. When properties related to the soil mineralogy were correlated with swell potential parameters, the amount of Gypsum present in the soil seems to be as significant to the swell behavior of the soil as the amount of Smectite found.
ContributorsShafer, Zachery (Author) / Zapata, Claudia (Thesis advisor) / Kavazanjian, Edward (Committee member) / Houston, Sandra (Committee member) / Arizona State University (Publisher)
Created2014
153024-Thumbnail Image.png
Description
Sedimentary basins are defined by extensional tectonics. Rugged mountain ranges stand in stark relief adjacent to muted structural basins filled with sediment. In simplest terms, this topography is the result of ranges uplifted along normal faults, and this uplift drives erosion within upland drainages, shedding sediment into subsiding basins. In

Sedimentary basins are defined by extensional tectonics. Rugged mountain ranges stand in stark relief adjacent to muted structural basins filled with sediment. In simplest terms, this topography is the result of ranges uplifted along normal faults, and this uplift drives erosion within upland drainages, shedding sediment into subsiding basins. In southeastern Arizona's Basin and Range province extensional tectonics waned at approximately 3-5 Myr, and the region's structural basins began transitioning from internal to external drainage, forming the modern Gila River fluvial network. In the Atacama Desert of northern Chile, some basins of the Central Depression remain internally drained while others have integrated to the Pacific Ocean. In northern Chile, rates of landscape evolution are some of the slowest on Earth due to the region's hyperarid climate. While the magnitude of upland erosion driven by extensional tectonics is largely recorded in the stratigraphy of the structural basins, the landscape's response to post-tectonic forcings is unknown.

I employ the full suite of modern geomorphic tools provided by terrestrial cosmogenic nuclides - surface exposure dating, conventional burial dating, isochron burial dating, quantifying millennial-scale upland erosion rates using detrital TCN, quantifying paleo-erosion rates using multiple TCN such as Ne-21/Be-10 and Al-26l/Be-10, and assessing sediment recycling and complex exposure using multiple TCN - to quantify the rates of landscape evolution in southeastern Arizona and northern Chile during the Late Cenozoic. In Arizona, I also use modern remnants of the pre-incision landscape and digital terrain analyses to reconstruct the landscape, allowing the quantification of incision and erosion rates that supplement detrital TCN-derived erosion rates. A new chronology for key basin high stand remnants (Frye Mesa) and a flight of Gila River terraces in Safford basin provides a record of incision rates from the Pliocene through the Quaternary, and I assess how significantly regional incision is driving erosion rates. Paired nuclide analyses in the Atacama Desert of northern Chile reveal complex exposure histories resulting from several rounds of transport and burial by fluvial systems. These results support a growing understanding that geomorphic processes in the Atacama Desert are more active than previously thought despite the region's hyperarid climate.
ContributorsJungers, Matthew Cross (Author) / Heimsath, Arjun M (Thesis advisor) / Whipple, Kelin (Committee member) / Arrowsmith, Ramon (Committee member) / Vivoni, Enrique (Committee member) / DeVecchio, Duane (Committee member) / Arizona State University (Publisher)
Created2014
150160-Thumbnail Image.png
Description
The importance of unsaturated soil behavior stems from the fact that a vast majority of infrastructures are founded on unsaturated soils. Research has recently been concentrated on unsaturated soil properties. In the evaluation of unsaturated soils, researchers agree that soil water retention characterized by the soil water characteristic curve (SWCC)

The importance of unsaturated soil behavior stems from the fact that a vast majority of infrastructures are founded on unsaturated soils. Research has recently been concentrated on unsaturated soil properties. In the evaluation of unsaturated soils, researchers agree that soil water retention characterized by the soil water characteristic curve (SWCC) is among the most important factors when assessing fluid flow, volume change and shear strength for these soils. The temperature influence on soil moisture flow is a major concern in the design of important engineering systems such as barriers in underground repositories for radioactive waste disposal, ground-source heat pump (GSHP) systems, evapotranspirative (ET) covers and pavement systems.. Accurate modeling of the temperature effect on the SWCC may lead to reduction in design costs, simpler constructability, and hence, more sustainable structures. . The study made use of two possible approaches to assess the temperature effect on the SWCC. In the first approach, soils were sorted from a large soil database into families of similar properties but located on sites with different MAAT. The SWCCs were plotted for each family of soils. Most families of soils showed a clear trend indicating the influence of temperature on the soil water retention curve at low degrees of saturation.. The second approach made use of statistical analysis. It was demonstrated that the suction increases as the MAAT decreases. The statistical analysis showed that even though the plasticity index proved to have the greatest influence on suction, the mean annual air temperature effect proved not to be negligible. In both approaches, a strong relationship between temperature, suction and soil properties was observed. Finally, a comparison of the model based on the mean annual air temperature environmental factor was compared to another model that makes use of the Thornthwaite Moisture Index (TMI) to estimate the environmental effects on the suction of unsaturated soils. Results showed that the MAAT can be a better indicator when compared to the TMI found but the results were inconclusive due to the lack of TMI data available.
ContributorsElkeshky, Maie Mohamed (Author) / Zapata, Claudia E (Thesis advisor) / Houston, Sandra (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2011