Matching Items (904)
Filtering by

Clear all filters

151939-Thumbnail Image.png
Description
Random peptide microarrays are a powerful tool for both the treatment and diagnostics of infectious diseases. On the treatment side, selected random peptides on the microarray have either binding or lytic potency against certain pathogens cells, thus they can be synthesized into new antimicrobial agents, denoted as synbodies (synthetic antibodies).

Random peptide microarrays are a powerful tool for both the treatment and diagnostics of infectious diseases. On the treatment side, selected random peptides on the microarray have either binding or lytic potency against certain pathogens cells, thus they can be synthesized into new antimicrobial agents, denoted as synbodies (synthetic antibodies). On the diagnostic side, serum containing specific infection-related antibodies create unique and distinct "pathogen-immunosignatures" on the random peptide microarray distinct from the healthy control serum, and this different mode of binding can be used as a more precise measurement than traditional ELISA tests. My thesis project is separated into these two parts: the first part falls into the treatment side and the second one focuses on the diagnostic side. My first chapter shows that a substitution amino acid peptide library helps to improve the activity of a recently reported synthetic antimicrobial peptide selected by the random peptide microarray. By substituting one or two amino acids of the original lead peptide, the new substitutes show changed hemolytic effects against mouse red blood cells and changed potency against two pathogens: Staphylococcus aureus and Pseudomonas aeruginosa. Two new substitutes are then combined together to form the synbody, which shows a significantly antimicrobial potency against Staphylococcus aureus (<0.5uM). In the second chapter, I explore the possibility of using the 10K Ver.2 random peptide microarray to monitor the humoral immune response of dengue. Over 2.5 billion people (40% of the world's population) live in dengue transmitting areas. However, currently there is no efficient dengue treatment or vaccine. Here, with limited dengue patient serum samples, we show that the immunosignature has the potential to not only distinguish the dengue infection from non-infected people, but also the primary dengue infection from the secondary dengue infections, dengue infection from West Nile Virus (WNV) infection, and even between different dengue serotypes. By further bioinformatic analysis, we demonstrate that the significant peptides selected to distinguish dengue infected and normal samples may indicate the epitopes responsible for the immune response.
ContributorsWang, Xiao (Author) / Johnston, Stephen Albert (Thesis advisor) / Blattman, Joseph (Committee member) / Arntzen, Charles (Committee member) / Arizona State University (Publisher)
Created2013
153167-Thumbnail Image.png
Description
The transmembrane subunit (gp41) of the envelope glycoprotein of HIV-1 associates noncovalently with the surface subunit (gp120) and together they play essential roles in viral mucosal transmission and infection of target cells. The membrane proximal region (MPR, residues 649-683) of gp41 is highly conserved and contains epitopes of broadly neutralizing

The transmembrane subunit (gp41) of the envelope glycoprotein of HIV-1 associates noncovalently with the surface subunit (gp120) and together they play essential roles in viral mucosal transmission and infection of target cells. The membrane proximal region (MPR, residues 649-683) of gp41 is highly conserved and contains epitopes of broadly neutralizing antibodies. The transmembrane (TM) domain (residues 684-705) of gp41 not only anchors the envelope glycoprotein complex in the viral membrane but also dynamically affects the interactions of the MPR with the membrane. While high-resolution X-ray structures of some segments of the MPR were solved in the past, they represent the pre-fusion and post-fusion conformations, most of which could not react with the broadly neutralizing antibodies 2F5 and 4E10. Structural information on the TM domain of gp41 is scant and at low resolution.

This thesis describes the structural studies of MPR-TM (residues 649-705) of HIV-1 gp41 by X-ray crystallography. MPR-TM was fused with different fusion proteins to improve the membrane protein overexpression. The expression level of MPR-TM was improved by fusion to the C-terminus of the Mistic protein, yielding ∼1 mg of pure MPR-TM protein per liter cell culture. The fusion partner Mistic was removed for final crystallization. The isolated MPR-TM protein was biophysically characterized and is a monodisperse candidate for crystallization. However, no crystal with diffraction quality was obtained even after extensive crystallization screens. A novel construct was designed to overexpress MPR-TM as a maltose binding protein (MBP) fusion. About 60 mg of MBP/MPR-TM recombinant protein was obtained from 1 liter of cell culture. Crystals of MBP/MPR-TM recombinant protein could not be obtained when MBP and MPR-TM were separated by a 42 amino acid (aa)-long linker but were obtained after changing the linker to three alanine residues. The crystals diffracted to 2.5 Å after crystallization optimization. Further analysis of the diffraction data indicated that the crystals are twinned. The final structure demonstrated that MBP crystallized as a dimer of trimers, but the electron density did not extend beyond the linker region. We determined by SDS-PAGE and MALDI-TOF MS that the crystals contained MBP only. The MPR-TM of gp41 might be cleaved during or after the process of crystallization. Comparison of the MBP trimer reported here with published trimeric MBP fusion structures indicated that MBP might form such a trimeric conformation under the effect of MPR-TM.
ContributorsGong, Zhen (Author) / Fromme, Petra (Thesis advisor) / Mor, Tsafrir (Thesis advisor) / Ros, Alexandra (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2014
150811-Thumbnail Image.png
Description
Over the past decade, several high-value proteins have been produced using plant-based transient expression systems. However, these studies exposed some limitations that must be overcome to allow plant expression systems to reach their full potential. These limitations are the low level of recombinant protein accumulation achieved in some cases, and

Over the past decade, several high-value proteins have been produced using plant-based transient expression systems. However, these studies exposed some limitations that must be overcome to allow plant expression systems to reach their full potential. These limitations are the low level of recombinant protein accumulation achieved in some cases, and lack of efficient co-expression vectors for the production of multi-protein complexes. This study report that tobacco Extensin (Ext) gene 3' untranslated region (UTR) can be broadly used to enhance recombinant protein expression in plants. Extensin is the hydroxyproline-rich glycoprotein that constitutes the major protein component of cell walls. Using transient expression, it was found that the Ext 3' UTR increases recombinant protein expression up to 13.5- and 6-fold in non-replicating and replicating vector systems, respectively, compared to previously established terminators. Enhanced protein accumulation was correlated with increased mRNA levels associated with reduction in read-through transcription. Regions of Ext 3' UTR essential for maximum gene expression included a poly-purine sequence used as a major poly-adenylation site. Furthermore, modified bean yellow dwarf virus (BeYDV)-based vectors designed to allow co-expression of multiple recombinant genes were constructed and tested for their performance in driving transient expression in plants. Robust co-expression and assembly of heavy and light chains of the anti-Ebola virus monoclonal antibody 6D8, as well as E. coli heat-labile toxin (LT) were achieved with the modified vectors. The simultaneous co-expression of three fluoroproteins using the single replicon, triple cassette is demonstrated by confocal microscopy. In conclusion, this study provides an excellent tool for rapid, cost-effective, large-scale manufacturing of recombinant proteins for use in medicine and industry.
ContributorsRosenthal, Sun Hee (Author) / Mason, Hugh (Thesis advisor) / Mor, Tsafrir (Committee member) / Chang, Yung (Committee member) / Arntzen, Charles (Committee member) / Arizona State University (Publisher)
Created2012
156067-Thumbnail Image.png
Description
Plants are a promising upcoming platform for production of vaccine components and other desirable pharmaceutical proteins that can only, at present, be made in living systems. The unique soil microbe Agrobacterium tumefaciens can transfer DNA to plants very efficiently, essentially turning plants into factories capable of producing virtually any gene.

Plants are a promising upcoming platform for production of vaccine components and other desirable pharmaceutical proteins that can only, at present, be made in living systems. The unique soil microbe Agrobacterium tumefaciens can transfer DNA to plants very efficiently, essentially turning plants into factories capable of producing virtually any gene. While genetically modified bacteria have historically been used for producing useful biopharmaceuticals like human insulin, plants can assemble much more complicated proteins, like human antibodies, that bacterial systems cannot. As plants do not harbor human pathogens, they are also safer alternatives than animal cell cultures. Additionally, plants can be grown very cheaply, in massive quantities.

In my research, I have studied the genetic mechanisms that underlie gene expression, in order to improve plant-based biopharmaceutical production. To do this, inspiration was drawn from naturally-occurring gene regulatory mechanisms, especially those from plant viruses, which have evolved mechanisms to co-opt the plant cellular machinery to produce high levels of viral proteins. By testing, modifying, and combining genetic elements from diverse sources, an optimized expression system has been developed that allows very rapid production of vaccine components, monoclonal antibodies, and other biopharmaceuticals. To improve target gene expression while maintaining the health and function of the plants, I identified, studied, and modified 5’ untranslated regions, combined gene terminators, and a nuclear matrix attachment region. The replication mechanisms of a plant geminivirus were also studied, which lead to additional strategies to produce more toxic biopharmaceutical proteins. Finally, the mechanisms employed by a geminivirus to spread between cells were investigated. It was demonstrated that these movement mechanisms can be functionally transplanted into a separate genus of geminivirus, allowing modified virus-based gene expression vectors to be spread between neighboring plant cells. Additionally, my work helps shed light on the basic genetic mechanisms employed by all living organisms to control gene expression.
ContributorsDiamos, Andy (Author) / Mason, Hugh S (Thesis advisor) / Mor, Tsafrir (Committee member) / Hogue, Brenda (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2017
157161-Thumbnail Image.png
Description
Antibodies are naturally occurring proteins that protect a host during infection through direct neutralization and/or recruitment of the innate immune system. Unfortunately, in some infections, antibodies present unique hurdles that must be overcome for a safer and more efficacious antibody-based therapeutic (e.g., antibody dependent viral enhancement (ADE) and inflammatory pathology).

Antibodies are naturally occurring proteins that protect a host during infection through direct neutralization and/or recruitment of the innate immune system. Unfortunately, in some infections, antibodies present unique hurdles that must be overcome for a safer and more efficacious antibody-based therapeutic (e.g., antibody dependent viral enhancement (ADE) and inflammatory pathology). This dissertation describes the utilization of plant expression systems to produce N-glycan specific antibody-based therapeutics for Dengue Virus (DENV) and Chikungunya Virus (CHIKV). The Fc region of an antibody interacts with Fcγ Receptors (FcγRs) on immune cells and components of the innate immune system. Each class of immune cells has a distinct action of neutralization (e.g., antibody dependent cell-mediated cytotoxicity (ADCC) and antibody dependent cell-mediated phagocytosis (ADCP)). Therefore, structural alteration of the Fc region results in novel immune pathways of protection. One approach is to modulate the N-glycosylation in the Fc region of the antibody. Of scientific significance, is the plant’s capacity to express human antibodies with homogenous plant and humanized N-glycosylation (WT and GnGn, respectively). This allows to study how specific glycovariants interact with other components of the immune system to clear an infection, producing a tailor-made antibody for distinct diseases. In the first section, plant-produced glycovariants were explored for reduced interactions with specific FcγRs for the overall reduction in ADE for DENV infections. The results demonstrate a reduction in ADE of our plant-produced monoclonal antibodies in in vitro experiments, which led to a greater survival in vivo of immunodeficient mice challenged with lethal doses of DENV and a sub-lethal dose of DENV in ADE conditions. In the second section, plant-produced glycovariants were explored for increased interaction with specific FcγRs to improve ADCC in the treatment of the highly inflammatory CHIKV. The results demonstrate an increase ADCC activity in in vitro experiments and a reduction in CHIKV-associated inflammation in in vivo mouse models. Overall, the significance of this dissertation is that it can provide a treatment for DENV and CHIKV; but equally importantly, give insight to the role of N-glycosylation in antibody effector functions, which has a broader implication for therapeutic development for other viral infections.
ContributorsHurtado, Jonathan (Author) / Chen, Qiang (Thesis advisor) / Arntzen, Charles (Committee member) / Borges, Chad (Committee member) / Lake, Douglas (Committee member) / Arizona State University (Publisher)
Created2019
131533-Thumbnail Image.png
Description
Many factors are at play within the genome of an organism, contributing to much of the diversity and variation across the tree of life. While the genome is generally encoded by four nucleotides, A, C, T, and G, this code can be expanded. One particular mechanism that we examine in

Many factors are at play within the genome of an organism, contributing to much of the diversity and variation across the tree of life. While the genome is generally encoded by four nucleotides, A, C, T, and G, this code can be expanded. One particular mechanism that we examine in this thesis is modification of bases—more specifically, methylation of Adenine (m6A) within the GATC motif of Escherichia coli. These methylated adenines are especially important in a process called methyl-directed mismatch repair (MMR), a pathway responsible for repairing errors in the DNA sequence produced by replication. In this pathway, methylated adenines identify the parent strand and direct the repair proteins to correct the erroneous base in the daughter strand. While the primary role of methylated adenines at GATC sites is to direct the MMR pathway, this methylation has also been found to affect other processes, such as gene expression, the activity of transposable elements, and the timing of DNA replication. However, in the absence of MMR, the ability of these other processes to maintain adenine methylation and its targets is unknown.
To determine if the disruption of the MMR pathway results in the reduced conservation of methylated adenines as well as an increased tolerance for mutations that result in the loss or gain of new GATC sites, we surveyed individual clones isolated from experimentally evolving wild-type and MMR-deficient (mutL- ;conferring an 150x increase in mutation rate) populations of E. coli with whole-genome sequencing. Initial analysis revealed a lack of mutations affecting methylation sites (GATC tetranucleotides) in wild-type clones. However, the inherent low mutation rates conferred by the wild-type background render this result inconclusive, due to a lack of statistical power, and reveal a need for a more direct measure of changes in methylation status. Thus as a first step to comparative methylomics, we benchmarked four different methylation-calling pipelines on three biological replicates of the wildtype progenitor strain for our evolved populations.
While it is understood that these methylated sites play a role in the MMR pathway, it is not fully understood the full extent of their effect on the genome. Thus the goal of this thesis was to better understand the forces which maintain the genome, specifically concerning m6A within the GATC motif.
ContributorsBoyer, Gwyneth (Author) / Lynch, Michael (Thesis director) / Behringer, Megan (Committee member) / Geiler-Samerotte, Kerry (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133897-Thumbnail Image.png
Description
This paper emphasizes how vital prosthetic devices are as tools for both congenital and acquired amputees in order to maximize this population's level of societal productivity, but several issues exist with the current technological focus of development by the prosthetic industry that creates unnecessary hurdles that amputees must surpass in

This paper emphasizes how vital prosthetic devices are as tools for both congenital and acquired amputees in order to maximize this population's level of societal productivity, but several issues exist with the current technological focus of development by the prosthetic industry that creates unnecessary hurdles that amputees must surpass in order to truly benefit from these tools. The first major issue is that these devices are not readily available to all amputees. The astronomical cost of most prosthetic devices is a variable that restricts low income amputee populations from obtaining these vital tools regardless of their level of need, thus highlighting the fact that amputees who are not financially stable are not supported in a fashion that is conducive to their success. Also, cost greatly affects children who suffer from a missing appendage due to the fact that they are in constant need of prosthetic replacement because of physical growth and development. Another issue with the current focus of the prosthetic industry is that it focuses on acquired amputees because this population is much larger in comparison to congenital amputees and thus more lucrative. Congenital amputees' particular needs are often entirely ignored in terms of prosthetic innovation. Finally, low daily utilization is a major issue amongst the amputee population. Several variables exist with the use of prosthetic devices that cause many amputees to decide against the utilization of these tools, like difficulty of use and lack of comfort. This paper will provide solutions to cost, discrimination, issues in development, and daily utilization by emphasizing on how lowering the cost through alternative designs and materials, transitioning the focus of technological development onto the entire amputee population rather than targeting the most lucrative group, and advancing the design in a fashion to which promotes daily utilization will provide the largest level of societal support, so that the amputee population as a whole can maximize their level of productivity in a manner that will allow this group to conquer the hardships that are introduced into their lives due to a missing appendage.
ContributorsO'Connor, Casey Charles (Author) / Popova, Laura (Thesis director) / Graff, Sarah (Committee member) / Department of Psychology (Contributor) / School of Social Work (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134172-Thumbnail Image.png
Description
This study examines Glamour magazine to determine the messages the publication sends to its readers and to evaluate if such messages align with modern feminist goals. The articles of Glamour's 12 issues from the year of 2016 are analyzed using a framework adapted from previous research on women's magazines. Articles

This study examines Glamour magazine to determine the messages the publication sends to its readers and to evaluate if such messages align with modern feminist goals. The articles of Glamour's 12 issues from the year of 2016 are analyzed using a framework adapted from previous research on women's magazines. Articles are coded as either positive (feminist, anti-traditional, promotes equality) or negative (anti-feminist, traditional, promotes inequality). Distinct content themes (appearance, dating, home, self-development, career development, politics/world issues, and entertainment) are also examined individually. After the presentation of data, I examine my findings through a feminist lens to determine the nature of the messages being sent to women through the magazine's editorial content, followed by an assessment of the value of women's magazines and how they could potentially shape the beliefs and roles of a 2017 woman. It is found that about half of the articles in Glamour could be considered as having feminist messages, with strong themes of personal choice, individual empowerment, and political involvement or activism in these articles and throughout the magazine. The content also has many blatantly feminist messages, including consistent use of the word itself. Another 40% of the articles are found to be neutral (no clear message to reader), and the remaining are negative. The sexism inherent in these negative articles is critically examined. Finally, the main takeaways of the findings and their ramifications are discussed from both a media consumer and a media producer perspective, with arguments for why it is important to be critical of a magazine's editorial content.
ContributorsAllnatt, Libby Paige (Author) / Pucci, Jessica (Thesis director) / Dove-Viebahn, Aviva (Committee member) / School of Social Transformation (Contributor) / Department of Psychology (Contributor) / Walter Cronkite School of Journalism and Mass Communication (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134188-Thumbnail Image.png
Description
Spousal loss is a common, significant life event that can negatively affect multiple facets of individual health and psychological adjustment. Social support is one factor that is shown to improve adjustment following spousal loss, but much less is known regarding which facet of social support is most predictive of positive

Spousal loss is a common, significant life event that can negatively affect multiple facets of individual health and psychological adjustment. Social support is one factor that is shown to improve adjustment following spousal loss, but much less is known regarding which facet of social support is most predictive of positive adjustment outcomes following spousal loss. This study examined the course of changes in mental health and well-being following spousal loss and which facets of social support are associated with better outcomes following spousal loss. Latent growth curve modeling was applied to data from 265 widowed individuals, ages 65 and older, across four assessments (baseline, and 6-, 18-, and 48- months following spousal loss). I examined the following research questions: (1) adjustment following spousal loss will follow a trajectory of an increase in depressive symptoms and anxiety and decrease in well-being with a leveling-off over time, with between-person differences, and (2) emotional support and instrumental support given will lead to more positive adjustment outcomes over time. Depressive symptoms followed the hypothesized trajectory but anxiety and well-being showed relative stability before and after spousal loss. Instrumental support was the most beneficial facet of social support, such that receiving more instrumental support was associated with lower levels of depressive symptoms and anxiety 6-months following spousal loss. Giving more instrumental support led to an increase in well-being following spousal loss. Instrumental support given and received led to increases in well-being as a function of spousal loss. The discussion focuses on whether and how these findings can help to identify ways through which support and help can be given to individuals to improve adjustment to spousal loss and fully recover.
ContributorsSullivan, Colleen Elizabeth (Author) / Infurna, Frank (Thesis director) / Luthar, Suniya (Committee member) / Davis, Mary (Committee member) / Department of Psychology (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134190-Thumbnail Image.png
Description
Effortful Control (EC) is a person's ability to self-regulate when presented with an environmental stimulus (Rothbart, et al., 2003). It has been well-established that high levels of EC are associated with multiple positive social and academic outcomes in adolescence (Spinrad et al., 2009). Research suggests that parents have a strong

Effortful Control (EC) is a person's ability to self-regulate when presented with an environmental stimulus (Rothbart, et al., 2003). It has been well-established that high levels of EC are associated with multiple positive social and academic outcomes in adolescence (Spinrad et al., 2009). Research suggests that parents have a strong impact on numerous child outcomes, such as EC, through both genetic and environmental pathways. Past research has also examined how parents diagnosed with psychopathology contribute to maladaptive outcomes in their children, including poor regulation, through both genetic and environmental processes (Ellis, et al., 1997). However, less is known about the longitudinal effects of parent dysfunction on the child's environment and regulatory abilities and potential mediators of those effects. The current study tested the hypotheses that parent Alcohol Use Disorder (AUD) would specifically predict early adversity, biological mother conscientiousness, and child EC longitudinally and that early adversity and biological mother conscientiousness would predict child EC. Participants were from a longitudinal study of familial alcoholism (N = 195). Regression analyses indicated that parent AUD was not specifically associated with child EC or with biological mother conscientiousness. However, parent AUD was related to higher levels of early adversity. Additionally, biological mother conscientiousness was associated with higher levels of child EC and early adversity was associated with lower levels of child EC when controlling for earlier EC. Given these findings, future research should test mediation models in which parent AUD predicts child EC indirectly through early adversity.
ContributorsRuof, Ariana Kelsey (Author) / Chassin, Laurie (Thesis director) / Elam, Kit (Committee member) / Davis, Mary (Committee member) / Department of Psychology (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12