Matching Items (8)
Filtering by

Clear all filters

154089-Thumbnail Image.png
Description
Swarms of animals, fish, birds, locusts etc. are a common occurrence but their coherence and method of organization poses a major question for mathematics and biology.The Vicsek and the Attraction-Repulsion are two models that have been proposed to explain the emergence of collective motion. A major issue

Swarms of animals, fish, birds, locusts etc. are a common occurrence but their coherence and method of organization poses a major question for mathematics and biology.The Vicsek and the Attraction-Repulsion are two models that have been proposed to explain the emergence of collective motion. A major issue for the Vicsek Model is that its particles are not attracted to each other, leaving the swarm with alignment in velocity but without spatial coherence. Restricting the particles to a bounded domain generates global spatial coherence of swarms while maintaining velocity alignment. While individual particles are specularly reflected at the boundary, the swarm as a whole is not. As a result, new dynamical swarming solutions are found.

The Attraction-Repulsion Model set with a long-range attraction and short-range repulsion interaction potential typically stabilizes to a well-studied flock steady state solution. The particles for a flock remain spatially coherent but have no spatial bound and explore all space. A bounded domain with specularly reflecting walls traps the particles within a specific region. A fundamental refraction law for a swarm impacting on a planar boundary is derived. The swarm reflection varies from specular for a swarm dominated by

kinetic energy to inelastic for a swarm dominated by potential energy. Inelastic collisions lead to alignment with the wall and to damped pulsating oscillations of the swarm. The fundamental refraction law provides a one-dimensional iterative map that allows for a prediction and analysis of the trajectory of the center of mass of a flock in a channel and a square domain.

The extension of the wall collisions to a scattering experiment is conducted by setting two identical flocks to collide. The two particle dynamics is studied analytically and shows a transition from scattering: diverging flocks to bound states in the form of oscillations or parallel motions. Numerical studies of collisions of flocks show the same transition where the bound states become either a single translating flock or a rotating (mill).
ContributorsThatcher, Andrea (Author) / Armbruster, Hans (Thesis advisor) / Motsch, Sebastien (Committee member) / Ringhofer, Christian (Committee member) / Platte, Rodrigo (Committee member) / Gardner, Carl (Committee member) / Arizona State University (Publisher)
Created2015
157121-Thumbnail Image.png
Description
In this work, I present a Bayesian inference computational framework for the analysis of widefield microscopy data that addresses three challenges: (1) counting and localizing stationary fluorescent molecules; (2) inferring a spatially-dependent effective fluorescence profile that describes the spatially-varying rate at which fluorescent molecules emit subsequently-detected photons (due to different

In this work, I present a Bayesian inference computational framework for the analysis of widefield microscopy data that addresses three challenges: (1) counting and localizing stationary fluorescent molecules; (2) inferring a spatially-dependent effective fluorescence profile that describes the spatially-varying rate at which fluorescent molecules emit subsequently-detected photons (due to different illumination intensities or different local environments); and (3) inferring the camera gain. My general theoretical framework utilizes the Bayesian nonparametric Gaussian and beta-Bernoulli processes with a Markov chain Monte Carlo sampling scheme, which I further specify and implement for Total Internal Reflection Fluorescence (TIRF) microscopy data, benchmarking the method on synthetic data. These three frameworks are self-contained, and can be used concurrently so that the fluorescence profile and emitter locations are both considered unknown and, under some conditions, learned simultaneously. The framework I present is flexible and may be adapted to accommodate the inference of other parameters, such as emission photophysical kinetics and the trajectories of moving molecules. My TIRF-specific implementation may find use in the study of structures on cell membranes, or in studying local sample properties that affect fluorescent molecule photon emission rates.
ContributorsWallgren, Ross (Author) / Presse, Steve (Thesis advisor) / Armbruster, Hans (Thesis advisor) / McCulloch, Robert (Committee member) / Arizona State University (Publisher)
Created2019
187432-Thumbnail Image.png
Description
The Bayesian paradigm provides a flexible and versatile framework for modeling complex biological systems without assuming a fixed functional form or other constraints on the underlying data. This dissertation explores the use of Bayesian nonparametric methods for analyzing fluorescence microscopy data in biophysics, with a focus on enumerating diffraction-limited particles,

The Bayesian paradigm provides a flexible and versatile framework for modeling complex biological systems without assuming a fixed functional form or other constraints on the underlying data. This dissertation explores the use of Bayesian nonparametric methods for analyzing fluorescence microscopy data in biophysics, with a focus on enumerating diffraction-limited particles, reconstructing potentials from trajectories corrupted by measurement noise, and inferring potential energy landscapes from fluorescence intensity experiments. This research demonstrates the power and potential of Bayesian methods for solving a variety of problems in fluorescence microscopy and biophysics more broadly.
ContributorsBryan IV, J Shepard (Author) / Presse, Steve (Thesis advisor) / Ozkan, Banu (Committee member) / Wadhwa, Navish (Committee member) / Shepherd, Doug (Committee member) / Arizona State University (Publisher)
Created2023
158103-Thumbnail Image.png
Description
Global optimization (programming) has been attracting the attention of researchers for almost a century. Since linear programming (LP) and mixed integer linear programming (MILP) had been well studied in early stages, MILP methods and software tools had improved in their efficiency in the past few years. They are now fast

Global optimization (programming) has been attracting the attention of researchers for almost a century. Since linear programming (LP) and mixed integer linear programming (MILP) had been well studied in early stages, MILP methods and software tools had improved in their efficiency in the past few years. They are now fast and robust even for problems with millions of variables. Therefore, it is desirable to use MILP software to solve mixed integer nonlinear programming (MINLP) problems. For an MINLP problem to be solved by an MILP solver, its nonlinear functions must be transformed to linear ones. The most common method to do the transformation is the piecewise linear approximation (PLA). This dissertation will summarize the types of optimization and the most important tools and methods, and will discuss in depth the PLA tool. PLA will be done using nonuniform partitioning of the domain of the variables involved in the function that will be approximated. Also partial PLA models that approximate only parts of a complicated optimization problem will be introduced. Computational experiments will be done and the results will show that nonuniform partitioning and partial PLA can be beneficial.
ContributorsAlkhalifa, Loay (Author) / Mittelmann, Hans (Thesis advisor) / Armbruster, Hans (Committee member) / Escobedo, Adolfo (Committee member) / Renaut, Rosemary (Committee member) / Sefair, Jorge (Committee member) / Arizona State University (Publisher)
Created2020
158889-Thumbnail Image.png
Description
A swarm describes a group of interacting agents exhibiting complex collective behaviors. Higher-level behavioral patterns of the group are believed to emerge from simple low-level rules of decision making at the agent-level. With the potential application of swarms of aerial drones, underwater robots, and other multi-robot systems, there has been

A swarm describes a group of interacting agents exhibiting complex collective behaviors. Higher-level behavioral patterns of the group are believed to emerge from simple low-level rules of decision making at the agent-level. With the potential application of swarms of aerial drones, underwater robots, and other multi-robot systems, there has been increasing interest in approaches for specifying complex, collective behavior for artificial swarms. Traditional methods for creating artificial multi-agent behaviors inspired by known swarms analyze the underlying dynamics and hand craft low-level control logics that constitute the emerging behaviors. Deep learning methods offered an approach to approximate the behaviors through optimization without much human intervention.

This thesis proposes a graph based neural network architecture, SwarmNet, for learning the swarming behaviors of multi-agent systems. Given observation of only the trajectories of an expert multi-agent system, the SwarmNet is able to learn sensible representations of the internal low-level interactions on top of being able to approximate the high-level behaviors and make long-term prediction of the motion of the system. Challenges in scaling the SwarmNet and graph neural networks in general are discussed in detail, along with measures to alleviate the scaling issue in generalization is proposed. Using the trained network as a control policy, it is shown that the combination of imitation learning and reinforcement learning improves the policy more efficiently. To some extent, it is shown that the low-level interactions are successfully identified and separated and that the separated functionality enables fine controlled custom training.
ContributorsZhou, Siyu (Author) / Ben Amor, Heni (Thesis advisor) / Walker, Sara I (Thesis advisor) / Davies, Paul (Committee member) / Pavlic, Ted (Committee member) / Presse, Steve (Committee member) / Arizona State University (Publisher)
Created2020
Description
The cell is a dense environment composes of proteins, nucleic acids, as well as other small molecules, which are constantly bombarding each other and interacting. These interactions and the diffusive motions are driven by internal thermal fluctuations. Upon collision, molecules can interact and form complexes. It is of interest to

The cell is a dense environment composes of proteins, nucleic acids, as well as other small molecules, which are constantly bombarding each other and interacting. These interactions and the diffusive motions are driven by internal thermal fluctuations. Upon collision, molecules can interact and form complexes. It is of interest to learn kinetic parameters such as reaction rates of one molecule converting to different species or two molecules colliding and form a new species as well as to learn diffusion coefficients.

Several experimental measurements can probe diffusion coefficients at the single-molecule and bulk level. The target of this thesis is on single-molecule methods, which can assess diffusion coefficients at the individual molecular level. For instance, super resolution methods like stochastic optical reconstruction microscopy (STORM) and photo activated localization microscopy (PALM), have a high spatial resolution with the cost of lower temporal resolution. Also, there is a different group of methods, such as MINFLUX, multi-detector tracking, which can track a single molecule with high spatio-temporal resolution. The problem with these methods is that they are only applicable to very diluted samples since they need to ensure existence of a single molecule in the region of interest (ROI).

In this thesis, the goal is to have the best of both worlds by achieving high spatio-temporal resolutions without being limited to a few molecules. To do so, one needs to refocus on fluorescence correlation spectroscopy (FCS) as a method that applies to both in vivo and in vitro systems with a high temporal resolution and relies on multiple molecules traversing a confocal volume for an extended period of time. The difficulty here is that the interpretation of the signal leads to different estimates for the kinetic parameters such as diffusion coefficients based on a different number of molecules we consider in the model. It is for this reason that the focus of this thesis is now on using Bayesian nonparametrics (BNPs) as a way to solve this model selection problem and extract kinetic parameters such as diffusion coefficients at the single-molecule level from a few photons, and thus with the highest temporal resolution as possible.
ContributorsJazani, Sina (Author) / Presse, Steve (Thesis advisor) / Matyushov, Dmitry (Committee member) / Levitus, Marcia (Committee member) / Fricks, John (Committee member) / Arizona State University (Publisher)
Created2020
190973-Thumbnail Image.png
Description
Protein interactions with the environment are crucial for proper function, butinteraction mechanisms are not always understood. In G protein-coupled receptors (GPCRs), cholesterol modulates the function in some, but not all, GPCRs. Coarse grained molecular dynamics was used to determine a set of contact events for each residue and fit to a biexponential to

Protein interactions with the environment are crucial for proper function, butinteraction mechanisms are not always understood. In G protein-coupled receptors (GPCRs), cholesterol modulates the function in some, but not all, GPCRs. Coarse grained molecular dynamics was used to determine a set of contact events for each residue and fit to a biexponential to determine the time scale of the long contacts observed in simulation. Several residues of interest were indicated in CCK1 R near Y140, which is known to render CCK1 R insensitive to cholesterol when mutated to alanine. A difference in the overall residence time between CCK1 R and its cholesterol insensitive homologue CCK2 R was also observed, indicating the ability to predict relative cholesterol binding for homologous proteins. Occasionally large errors and poor fits to the data were observed, so several improvements were made, including generalizing the model to include K exponential components. The sets of residence times in the improved method were analyzed using Bayesian nonparametrics, which allowed for error estimations and the classification of contact events to the individual components. Ten residues in three GPCRs bound to cholesterol in experimental structures had large tau. Slightly longer overall interaction time for the cholesterol sensitive CB1 R over its insensitive homologue CB2 R was also observed. The interactions between the cystic fibrosis transmembrane conductance regulator (CFTR) and GlyH-101, an open-channel blocker, were analyzed using molecular dynamics. The results showed the bromine in GlyH-101 was in constant contact with F337, which is just inside the extracellular gate. The simulations also showed an insertion of GlyH-101 between TM1 and TM6 deeper than the starting binding pose. Once inserted deeper between TMs 1 and 6, the number of persistent contacts also increased. This proposed binding pose may help in future investigations of CFTR and help determine an open-channel structure for the protein, which in turn may help in the development of treatments for various medical conditions. Overall, the use of molecular dynamics and state of the art analysis tools can be useful in the study of membrane proteins and eventuallyin the development of treatments for ailments stemming from their atypical function.
ContributorsSexton, Ricky (Author) / Beckstein, Oliver (Thesis advisor) / Presse, Steve (Committee member) / Ozkan, Sefika B. (Committee member) / Hariadi, Rizal (Committee member) / Arizona State University (Publisher)
Created2022
192986-Thumbnail Image.png
Description
Computational biophysics is a powerful tool for observing and understanding the microscopic machinery that underpins the biological world. Molecular modeling and simulations can help scientists understand a cell’s behavior and the mechanisms that drive it. Empirical evidence can provide information on the structure and organization of biomolecular machines, which serve

Computational biophysics is a powerful tool for observing and understanding the microscopic machinery that underpins the biological world. Molecular modeling and simulations can help scientists understand a cell’s behavior and the mechanisms that drive it. Empirical evidence can provide information on the structure and organization of biomolecular machines, which serve as the backbone of biomolecular modeling. Experimental data from probing the cell’s inner workings can provide modelers with an initial structure from which they can hypothesize and independently verify function, complex formation, and response. Additionally, molecular data can be used to drive simulations toward less probable but equally interesting states. With the advent of machine learning, researchers now have an unprecedented opportunity to take advantage of the wealth of data collected in a biomolecular experiment. This dissertation presents a comprehensive review of atomistic modeling with cryo-electron microscopy and the development of new simulation strategies to maximize insights gained from experiments. The review covers the integration of cryo-EM and molecular dynamics, highlighting the evolution of their relationship and the recent history of MD innovations in cryo-EM modeling. It also covers the discoveries made possible by the integration of molecular modeling with cryo-EM. Next, this work presents a method for fitting small molecules into cryo-electron microscopy maps, which uses neural network potentials to parameterize a diverse set of ligands. The method obtained fitted structures commensurate with, if not better than, the structures submitted to the Protein Data Bank. Additionally, the work describes the data-guided Multi- Map methodology for ensemble refinement of molecular movies. The method shows that cryo-electron microscopy maps can be used to bias simulations along a specially constructed reaction coordinate and capture conformational transitions between known intermediates. The simulated pathways appear reversible with minimal hysteresis and require only low-resolution density information to guide the transition. Finally, the study analyzes the SARS-CoV-2 spike protein and the conformational heterogeneity of its receptor binding domain. The simulation was guided along an experimentally determined free energy landscape. The resulting motions from following a pathway of low-energy states show a degree of openness not observed in the static models. This sheds light on the mechanism by which the spike protein is utilized for host infection and provides a rational explanation for the effectiveness of certain therapeutics. This work contributes to the understanding of biomolecular modeling and the development of new strategies to provide valuable insights into the workings of cellular machinery.
ContributorsVant, John Wyatt (Author) / Singharoy, Abhishek (Thesis advisor) / Heyden, Matthias (Committee member) / Presse, Steve (Committee member) / Arizona State University (Publisher)
Created2024