Matching Items (1,248)
Filtering by

Clear all filters

151425-Thumbnail Image.png
Description
HgCdTe is currently the dominant material for infrared sensing and imaging, and is usually grown on lattice-matched bulk CdZnTe (CZT) substrates. There have been significant recent efforts to identify alternative substrates to CZT as well as alternative detector materials to HgCdTe. In this dissertation research, a wide range of transmission

HgCdTe is currently the dominant material for infrared sensing and imaging, and is usually grown on lattice-matched bulk CdZnTe (CZT) substrates. There have been significant recent efforts to identify alternative substrates to CZT as well as alternative detector materials to HgCdTe. In this dissertation research, a wide range of transmission electron microscopy (TEM) imaging and analytical techniques was used in the characterization of epitaxial HgCdTe and related materials and substrates for third generation IR detectors. ZnTe layers grown on Si substrates are considered to be promising candidates for lattice-matched, large-area, and low-cost composite substrates for deposition of II-VI and III-V compound semiconductors with lattice constants near 6.1 Å. After optimizing MBE growth conditions including substrate pretreatment prior to film growth, as well as nucleation and growth temperatures, thick ZnTe/Si films with high crystallinity, low defect density, and excellent surface morphology were achieved. Changes in the Zn/Te flux ratio used during growth were also investigated. Small-probe microanalysis confirmed that a small amount of As was present at the ZnTe/Si interface. A microstructural study of HgCdTe/CdTe/GaAs (211)B and CdTe/GaAs (211)B heterostructures grown using MBE was carried out. High quality MBE-grown CdTe on GaAs(211)B substrates was demonstrated to be a viable composite substrate platform for HgCdTe growth. In addition, analysis of interfacial misfit dislocations and residual strain showed that the CdTe/GaAs interface was fully relaxed. In the case of HgCdTe/CdTe/ GaAs(211)B, thin HgTe buffer layers between HgCdTe and CdTe were also investigated for improving the HgCdTe crystal quality. A set of ZnTe layers epitaxially grown on GaSb(211)B substrates using MBE was studied using high resolution X-ray diffraction (HRXRD) measurements and TEM characterization in order to investigate conditions for defect-free growth. HRXRD results gave critical thickness estimates between 350 nm and 375 nm, in good agreement with theoretical predictions. Moreover, TEM results confirmed that ZnTe layers with thicknesses of 350 nm had highly coherent interfaces and very low dislocation densities, unlike samples with the thicker ZnTe layers.
ContributorsKim, Jae Jin (Author) / Smith, David J. (Thesis advisor) / McCartney, Martha R. (Committee member) / Alford, Terry L. (Committee member) / Crozier, Peter A. (Committee member) / Arizona State University (Publisher)
Created2012
150485-Thumbnail Image.png
Description
Many species e.g. sea urchin form amorphous calcium carbonate (ACC) precursor phases that subsequently transform into crystalline CaCO3. It is certainly possible that the biogenic ACC might have more than 10 wt% Mg and ∼ 3 wt% of water. The structure of ACC and the mechanisms by which it transforms

Many species e.g. sea urchin form amorphous calcium carbonate (ACC) precursor phases that subsequently transform into crystalline CaCO3. It is certainly possible that the biogenic ACC might have more than 10 wt% Mg and ∼ 3 wt% of water. The structure of ACC and the mechanisms by which it transforms to crystalline phase are still poorly understood. In this dissertation our goal is to determine an atomic structure model that is consistent with diffraction and IR measurements of ACC. For this purpose a calcite supercell with 24 formula units, containing 120 atoms, was constructed. Various configurations with substitution of Ca by 6 Mg ions (6 wt.%) and insertion of 3-5 H2O molecules (2.25-3.75 wt.%) in the interstitial positions of the supercell, were relaxed using a robust density function code VASP. The most noticeable effects were the tilts of CO3 groups and the distortion of Ca sub-lattice, especially in the hydrated case. The distributions of Ca-Ca nearest neighbor distance and CO3 tilts were extracted from various configurations. The same methods were also applied to aragonite. Sampling from the calculated distortion distributions, we built models for amorphous calcite/aragonite of size ∼ 1700 nm3 based on a multi-scale modeling scheme. We used these models to generate diffraction patterns and profiles with our diffraction code. We found that the induced distortions were not enough to generate a diffraction profile typical of an amorphous material. We then studied the diffraction profiles from several nano-crystallites as recent studies suggest that ACC might be a random array of nanocryatallites. It was found that the generated diffraction profile from a nano-crystallite of size ∼ 2 nm3 is similar to that from the ACC.
ContributorsSinha, Sourabh (Author) / Rez, Peter (Thesis advisor) / Bearat, Hamdallah A. (Committee member) / Bennett, Peter A. (Committee member) / McCartney, Martha R. (Committee member) / Peng, Xihong (Committee member) / Arizona State University (Publisher)
Created2012
149639-Thumbnail Image.png
Description
The research of this dissertation involved quantitative characterization of electrostatic potential and charge distribution of semiconductor nanostructures using off-axis electron holography, as well as other electron microscopy techniques. The investigated nanostructures included Ge quantum dots, Ge/Si core/shell nanowires, and polytype heterostructures in ZnSe nanobelts. Hole densities were calculated for the

The research of this dissertation involved quantitative characterization of electrostatic potential and charge distribution of semiconductor nanostructures using off-axis electron holography, as well as other electron microscopy techniques. The investigated nanostructures included Ge quantum dots, Ge/Si core/shell nanowires, and polytype heterostructures in ZnSe nanobelts. Hole densities were calculated for the first two systems, and the spontaneous polarization for wurtzite ZnSe was determined. Epitaxial Ge quantum dots (QDs) embedded in boron-doped silicon were studied. Reconstructed phase images showed extra phase shifts near the base of the QDs, which was attributed to hole accumulation in these regions. The resulting charge density was (0.03±0.003) holes
m3, which corresponded to about 30 holes localized to a pyramidal, 25-nm-wide Ge QD. This value was in reasonable agreement with the average number of holes confined to each Ge dot determined using a capacitance-voltage measurement. Hole accumulation in Ge/Si core/shell nanowires was observed and quantified using off-axis electron holography and other electron microscopy techniques. High-angle annular-dark-field scanning transmission electron microscopy images and electron holograms were obtained from specific nanowires. The intensities of the former were utilized to calculate the projected thicknesses for both the Ge core and the Si shell. The excess phase shifts measured by electron holography across the nanowires indicated the presence of holes inside the Ge cores. The hole density in the core regions was calculated to be (0.4±0.2)
m3 based on a simplified coaxial cylindrical model. Homogeneous zincblende/wurtzite heterostructure junctions in ZnSe nanobelts were studied. The observed electrostatic fields and charge accumulation were attributed to spontaneous polarization present in the wurtzite regions since the contributions from piezoelectric polarization were shown to be insignificant based on geometric phase analysis. The spontaneous polarization for the wurtzite ZnSe was calculated to be psp = -(0.0029±0.00013) C/m2, whereas a first principles' calculation gave psp = -0.0063 C/m2. The atomic arrangements and polarity continuity at the zincblende/wurtzite interface were determined through aberration-corrected high-angle annular-dark-field imaging, which revealed no polarity reversal across the interface. Overall, the successful outcomes of these studies confirmed the capability of off-axis electron holography to provide quantitative electrostatic information for nanostructured materials.
ContributorsLi, Luying (Author) / McCartney, Martha R. (Thesis advisor) / Smith, David J. (Thesis advisor) / Treacy, Michael J. (Committee member) / Shumway, John (Committee member) / Drucker, Jeffery (Committee member) / Arizona State University (Publisher)
Created2011
149364-Thumbnail Image.png
Description
The research of this dissertation has involved the nanoscale quantitative characterization of patterned magnetic nanostructures and devices using off-axis electron holography and Lorentz microscopy. The investigation focused on different materials of interest, including monolayer Co nanorings, multilayer Co/Cu/Py (Permalloy, Ni81Fe19) spin-valve nanorings, and notched Py nanowires, which were fabricated via

The research of this dissertation has involved the nanoscale quantitative characterization of patterned magnetic nanostructures and devices using off-axis electron holography and Lorentz microscopy. The investigation focused on different materials of interest, including monolayer Co nanorings, multilayer Co/Cu/Py (Permalloy, Ni81Fe19) spin-valve nanorings, and notched Py nanowires, which were fabricated via a standard electron-beam lithography (EBL) and lift-off process. Magnetization configurations and reversal processes of Co nanorings, with and without slots, were observed. Vortex-controlled switching behavior with stepped hysteresis loops was identified, with clearly defined onion states, vortex states, flux-closure (FC) states, and Omega states. Two distinct switching mechanisms for the slotted nanorings, depending on applied field directions relative to the slot orientations, were attributed to the vortex chirality and shape anisotropy. Micromagnetic simulations were in good agreement with electron holography observations of the Co nanorings, also confirming the switching field of 700-800 Oe. Co/Cu/Py spin-valve slotted nanorings exhibited different remanent states and switching behavior as a function of the different directions of the applied field relative to the slots. At remanent state, the magnetizations of Co and Py layers were preferentially aligned in antiparallel coupled configuration, with predominant configurations in FC or onion states. Two-step and three-step hysteresis loops were quantitatively determined for nanorings with slots perpendicular, or parallel to the applied field direction, respectively, due to the intrinsic coercivity difference and interlayer magnetic coupling between Co and Py layers. The field to reverse both layers was on the order of ~800 Oe. Domain-wall (DW) motion within Py nanowires (NWs) driven by an in situ magnetic field was visualized and quantified. Different aspects of DW behavior, including nucleation, injection, pinning, depinning, relaxation, and annihilation, occurred depending on applied field strength. A unique asymmetrical DW pinning behavior was recognized, depending on DW chirality relative to the sense of rotation around the notch. The transverse DWs relaxed into vortex DWs, followed by annihilation in a reversed field, which was in agreement with micromagnetic simulations. Overall, the success of these studies demonstrated the capability of off-axis electron holography to provide valuable insights for understanding magnetic behavior on the nanoscale.
ContributorsHe, Kai (Author) / McCartney, Martha R. (Thesis advisor) / Smith, David J. (Thesis advisor) / Chamberlin, Ralph V. (Committee member) / Crozier, Peter A. (Committee member) / Drucker, Jeff (Committee member) / Arizona State University (Publisher)
Created2010
172985-Thumbnail Image.png
Description

Breast cancer affects about 12% of women in the US. Arguably, it is one of the most advertised cancers. Mammography became a popular tool of breast cancer screening in the 1970s, and patient-geared guidelines came from the American Cancer Society (ACS) and the US Preventative Task Force (USPSTF). This research

Breast cancer affects about 12% of women in the US. Arguably, it is one of the most advertised cancers. Mammography became a popular tool of breast cancer screening in the 1970s, and patient-geared guidelines came from the American Cancer Society (ACS) and the US Preventative Task Force (USPSTF). This research focuses on ACS guidelines, as they were the earliest as well as the most changed guidelines. Mammography guidelines changed over time due to multiple factors. This research has tracked possible causes of those changes. Research began with an extensive literature search of clinical trials, the New York Times and the Washington Post archives, systematic reviews, ACS and USPSTF archives.

Created2021-02-16
172986-Thumbnail Image.png
Description

Science fiction works can reflect the relationship between science and society by telling stories that are set in the future of ethical implications or social consequences of scientific advancements. This thesis investigates how the concept of reproduction is depicted in popular science fiction works.

Created2021-02-10
172987-Thumbnail Image.png
Description

By questioning methods of sex selection since their early development, and often discovering that they are unreliable, scientists have increased the creative and technological capacity of the field of reproductive health. The presentation of these methods to the public, via published books on timing methods and company websites for sperm

By questioning methods of sex selection since their early development, and often discovering that they are unreliable, scientists have increased the creative and technological capacity of the field of reproductive health. The presentation of these methods to the public, via published books on timing methods and company websites for sperm sorting, increased interest in, and influence of, sex selection within the global society. The purpose of explaining the history, interest, development, and impact of various sex selection methods in the mid-twentieth century based on the information that is available on them today is to show couples which methods have failed and provide them with the knowledge necessary to make an informed decision on how they choose to go about utilizing methods of sex selection.

Created2021-02-26
172988-Thumbnail Image.png
Description

By demonstrating the struggle for sound standard of care for non-medical reproductive health care providers during the nineteenth and early twentieth century, this project emphasizes what the standards of reproductive health care for abortion and contraception might be like if the organizations that made them so readily available, like Planned

By demonstrating the struggle for sound standard of care for non-medical reproductive health care providers during the nineteenth and early twentieth century, this project emphasizes what the standards of reproductive health care for abortion and contraception might be like if the organizations that made them so readily available, like Planned Parenthood, were defunded or criminalized in our modern setting.

Created2021-02-23
172989-Thumbnail Image.png
Description

On 29 June 1988, in Bowen v. Kendrick, the US Supreme Court ruled in a five-to-four decision that the 1981 Adolescent Family Life Act, or AFLA, was constitutional. Under AFLA, the US government could distribute federal funding for abstinence-only sexual education programs, oftentimes given to groups with religious affiliations. As

On 29 June 1988, in Bowen v. Kendrick, the US Supreme Court ruled in a five-to-four decision that the 1981 Adolescent Family Life Act, or AFLA, was constitutional. Under AFLA, the US government could distribute federal funding for abstinence-only sexual education programs, oftentimes given to groups with religious affiliations. As a federal taxpayer, Chan Kendrick challenged the constitutionality of AFLA, claiming it violated the separation of church and state. The Supreme Court found that although AFLA funded programs that aligned with certain religious ideologies, it was constitutional because it did not encourage government involvement in religion, and it held a valid secular purpose in seeking to prevent adolescent pregnancy and premarital sexual relations. By upholding AFLA, Bowen v. Kendrick enabled the US government to continue funding abstinence-only education, which researchers have found to be ineffective.

Created2021-02-26
172990-Thumbnail Image.png
Description

In 1997, physicians and researchers Ambre Olsen, Virginia Smith, John Bergstrom, Joyce Colling, and Amanda Clark published, “Epidemiology of Surgically Managed Pelvic Organ Prolapse and Urinary Incontinence,” in the journal Obstetrics and Gynecology. In their article, the authors retrospectively analyzed data from patients who underwent surgery for pelvic organ prolapse

In 1997, physicians and researchers Ambre Olsen, Virginia Smith, John Bergstrom, Joyce Colling, and Amanda Clark published, “Epidemiology of Surgically Managed Pelvic Organ Prolapse and Urinary Incontinence,” in the journal Obstetrics and Gynecology. In their article, the authors retrospectively analyzed data from patients who underwent surgery for pelvic organ prolapse or urinary incontinence two years prior in 1995. Often due to a weakening of or damage to their pelvic muscles, women with pelvic organ prolapse can experience a descent of pelvic organs into the lower pelvis and vagina. People with urinary incontinence can experience bladder control issues and urinary leaks. According to the authors, an estimated fifty percent of women who have previously given birth have had a prolapse. In their article, Olsen and colleagues analyze factors such as race, age, and weight in women who had surgery to treat pelvic organ prolapse and ultimately advocate for a standard assessment for the severity of those conditions.

Created2021-02-23