Matching Items (64)
150070-Thumbnail Image.png
Description
This dissertation creates models of past potential vegetation in the Southern Levant during most of the Holocene, from the beginnings of farming through the rise of urbanized civilization (12 to 2.5 ka BP). The time scale encompasses the rise and collapse of the earliest agrarian civilizations in this region. The

This dissertation creates models of past potential vegetation in the Southern Levant during most of the Holocene, from the beginnings of farming through the rise of urbanized civilization (12 to 2.5 ka BP). The time scale encompasses the rise and collapse of the earliest agrarian civilizations in this region. The archaeological record suggests that increases in social complexity were linked to climatic episodes (e.g., favorable climatic conditions coincide with intervals of prosperity or marked social development such as the Neolithic Revolution ca. 11.5 ka BP, the Secondary Products Revolution ca. 6 ka BP, and the Middle Bronze Age ca. 4 ka BP). The opposite can be said about periods of climatic deterioration, when settled villages were abandoned as the inhabitants returned to nomadic or semi nomadic lifestyles (e.g., abandonment of the largest Neolithic farming towns after 8 ka BP and collapse of Bronze Age towns and cities after 3.5 ka BP during the Late Bronze Age). This study develops chronologically refined models of past vegetation from 12 to 2.5 ka BP, at 500 year intervals, using GIS, remote sensing and statistical modeling tools (MAXENT) that derive from species distribution modeling. Plants are sensitive to alterations in their environment and respond accordingly. Because of this, they are valuable indicators of landscape change. An extensive database of historical and field gathered observations was created. Using this database as well as environmental variables that include temperature and precipitation surfaces for the whole study period (also at 500 year intervals), the potential vegetation of the region was modeled. Through this means, a continuous chronology of potential vegetation of the Southern Levantwas built. The produced paleo-vegetation models generally agree with the proxy records. They indicate a gradual decline of forests and expansion of steppe and desert throughout the Holocene, interrupted briefly during the Mid Holocene (ca. 4 ka BP, Middle Bronze Age). They also suggest that during the Early Holocene, forest areas were extensive, spreading into the Northern Negev. The two remaining forested areas in the Northern and Southern Plateau Region in Jordan were also connected during this time. The models also show general agreement with the major cultural developments, with forested areas either expanding or remaining stable during prosperous periods (e.g., Pre Pottery Neolithic and Middle Bronze Age), and significantly contracting during moments of instability (e.g., Late Bronze Age).
ContributorsSoto-Berelov, Mariela (Author) / Fall, Patricia L. (Thesis advisor) / Myint, Soe (Committee member) / Turner, Billie L (Committee member) / Falconer, Steven (Committee member) / Arizona State University (Publisher)
Created2011
152183-Thumbnail Image.png
Description
Two critical limitations for hyperspatial imagery are higher imagery variances and large data sizes. Although object-based analyses with a multi-scale framework for diverse object sizes are the solution, more data sources and large amounts of testing at high costs are required. In this study, I used tree density segmentation as

Two critical limitations for hyperspatial imagery are higher imagery variances and large data sizes. Although object-based analyses with a multi-scale framework for diverse object sizes are the solution, more data sources and large amounts of testing at high costs are required. In this study, I used tree density segmentation as the key element of a three-level hierarchical vegetation framework for reducing those costs, and a three-step procedure was used to evaluate its effects. A two-step procedure, which involved environmental stratifications and the random walker algorithm, was used for tree density segmentation. I determined whether variation in tone and texture could be reduced within environmental strata, and whether tree density segmentations could be labeled by species associations. At the final level, two tree density segmentations were partitioned into smaller subsets using eCognition in order to label individual species or tree stands in two test areas of two tree densities, and the Z values of Moran's I were used to evaluate whether imagery objects have different mean values from near segmentations as a measure of segmentation accuracy. The two-step procedure was able to delineating tree density segments and label species types robustly, compared to previous hierarchical frameworks. However, eCognition was not able to produce detailed, reasonable image objects with optimal scale parameters for species labeling. This hierarchical vegetation framework is applicable for fine-scale, time-series vegetation mapping to develop baseline data for evaluating climate change impacts on vegetation at low cost using widely available data and a personal laptop.
ContributorsLiau, Yan-ting (Author) / Franklin, Janet (Thesis advisor) / Turner, Billie (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2013
151928-Thumbnail Image.png
Description
Land transformation under conditions of rapid urbanization has significantly altered the structure and functioning of Earth's systems. Land fragmentation, a characteristic of land transformation, is recognized as a primary driving force in the loss of biological diversity worldwide. However, little is known about its implications in complex urban settings where

Land transformation under conditions of rapid urbanization has significantly altered the structure and functioning of Earth's systems. Land fragmentation, a characteristic of land transformation, is recognized as a primary driving force in the loss of biological diversity worldwide. However, little is known about its implications in complex urban settings where interaction with social dynamics is intense. This research asks: How do patterns of land cover and land fragmentation vary over time and space, and what are the socio-ecological drivers and consequences of land transformation in a rapidly growing city? Using Metropolitan Phoenix as a case study, the research links pattern and process relationships between land cover, land fragmentation, and socio-ecological systems in the region. It examines population growth, water provision and institutions as major drivers of land transformation, and the changes in bird biodiversity that result from land transformation. How to manage socio-ecological systems is one of the biggest challenges of moving towards sustainability. This research project provides a deeper understanding of how land transformation affects socio-ecological dynamics in an urban setting. It uses a series of indices to evaluate land cover and fragmentation patterns over the past twenty years, including land patch numbers, contagion, shapes, and diversities. It then generates empirical evidence on the linkages between land cover patterns and ecosystem properties by exploring the drivers and impacts of land cover change. An interdisciplinary approach that integrates social, ecological, and spatial analysis is applied in this research. Findings of the research provide a documented dataset that can help researchers study the relationship between human activities and biotic processes in an urban setting, and contribute to sustainable urban development.
ContributorsZhang, Sainan (Author) / Boone, Christopher G. (Thesis advisor) / York, Abigail M. (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2013
141392-Thumbnail Image.png
Description

Problem: The prospect that urban heat island (UHI) effects and climate change may increase urban temperatures is a problem for cities that actively promote urban redevelopment and higher densities. One possible UHI mitigation strategy is to plant more trees and other irrigated vegetation to prevent daytime heat storage and facilitate

Problem: The prospect that urban heat island (UHI) effects and climate change may increase urban temperatures is a problem for cities that actively promote urban redevelopment and higher densities. One possible UHI mitigation strategy is to plant more trees and other irrigated vegetation to prevent daytime heat storage and facilitate nighttime cooling, but this requires water resources that are limited in a desert city like Phoenix.

Purpose: We investigated the tradeoffs between water use and nighttime cooling inherent in urban form and land use choices.

Methods: We used a Local-Scale Urban Meteorological Parameterization Scheme (LUMPS) model to examine the variation in temperature and evaporation in 10 census tracts in Phoenix's urban core. After validating results with estimates of outdoor water use based on tract-level city water records and satellite imagery, we used the model to simulate the temperature and water use consequences of implementing three different scenarios.

Results and conclusions: We found that increasing irrigated landscaping lowers nighttime temperatures, but this relationship is not linear; the greatest reductions occur in the least vegetated neighborhoods. A ratio of the change in water use to temperature impact reached a threshold beyond which increased outdoor water use did little to ameliorate UHI effects.

Takeaway for practice: There is no one design and landscape plan capable of addressing increasing UHI and climate effects everywhere. Any one strategy will have inconsistent results if applied across all urban landscape features and may lead to an inefficient allocation of scarce water resources.

Research Support: This work was supported by the National Science Foundation (NSF) under Grant SES-0345945 (Decision Center for a Desert City) and by the City of Phoenix Water Services Department. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF.

ContributorsGober, Patricia (Author) / Brazel, Anthony J. (Author) / Quay, Ray (Author) / Myint, Soe (Author) / Grossman-Clarke, Susanne (Author) / Miller, Adam (Author) / Rossi, Steve (Author)
Created2010-01-04
141393-Thumbnail Image.png
Description

This study addresses a classic sustainability challenge—the tradeoff between water conservation and temperature amelioration in rapidly growing cities, using Phoenix, Arizona and Portland, Oregon as case studies. An urban energy balance model— LUMPS (Local-Scale Urban Meteorological Parameterization Scheme)—is used to represent the tradeoff between outdoor water use and nighttime cooling

This study addresses a classic sustainability challenge—the tradeoff between water conservation and temperature amelioration in rapidly growing cities, using Phoenix, Arizona and Portland, Oregon as case studies. An urban energy balance model— LUMPS (Local-Scale Urban Meteorological Parameterization Scheme)—is used to represent the tradeoff between outdoor water use and nighttime cooling during hot, dry summer months. Tradeoffs were characterized under three scenarios of land use change and three climate-change assumptions. Decreasing vegetation density reduced outdoor water use but sacrificed nighttime cooling. Increasing vegetated surfaces accelerated nighttime cooling, but increased outdoor water use by ~20%. Replacing impervious surfaces with buildings achieved similar improvements in nighttime cooling with minimal increases in outdoor water use; it was the most water-efficient cooling strategy. The fact that nighttime cooling rates and outdoor water use were more sensitive to land use scenarios than climate-change simulations suggested that cities can adapt to a warmer climate by manipulating land use.

ContributorsGober, Patricia (Author) / Middel, Ariane (Author) / Brazel, Anthony J. (Author) / Myint, Soe (Author) / Chang, Heejun (Author) / Duh, Jiunn-Der (Author) / House-Peters, Lily (Author)
Created2013-05-16
Description

While PhD dissertations are typically accessible many other terminal degree projects remain invisible and inaccessible to a greater audience. Over the past year and a half, librarians at Arizona State University collaborated with faculty and departmental administrators across a variety of fields to develop and create institutional repository collections that

While PhD dissertations are typically accessible many other terminal degree projects remain invisible and inaccessible to a greater audience. Over the past year and a half, librarians at Arizona State University collaborated with faculty and departmental administrators across a variety of fields to develop and create institutional repository collections that highlight and authoritatively share this type of student scholarship with schools, researchers, and future employers. This poster will present the benefits, challenges, and considerations required to successfully implement and manage these collections of applied final projects or capstone projects. Specifically, issues/challenges related to metadata consistency, faculty buy-in, and developing an ingest process, as well as benefits related to increased visibility and improved educational and employment opportunities will be discussed. This interactive presentation will also discuss lessons learned from the presenter’s experiences in context of how they can easily apply to benefit their respective institutions.

ContributorsHarp, Matthew (Author) / Dyal, Samuel (Author) / Pardon, Kevin (Author) / Arizona State University. ASU Library (Contributor)
Created2017-05-02
Description

This presentation highlights SHARE’s ongoing initiatives as a free, open data set about research and scholarly activities across their life cycle. It includes information about the SHARE open technology and the ongoing community contributions. A variety of data set use cases and their implementation will be described to allow others

This presentation highlights SHARE’s ongoing initiatives as a free, open data set about research and scholarly activities across their life cycle. It includes information about the SHARE open technology and the ongoing community contributions. A variety of data set use cases and their implementation will be described to allow others to apply similar tools and techniques to their home institution or organization. SHARE aggregates free, open metadata about scholarship that includes proposals, registrations, data, publications, and more from more than 125 sources including ASU.

ContributorsHarp, Matthew (Author) / Hudson-Vitale, Cynthia (Author) / Arizona State University. ASU Library (Contributor)
Created2017-04-19
Description

You’ve probably heard a lot of “futurists” talk about data, but it’s not always clear how data relate to our day to day work in libraries.

Why are data important, and what’s the big deal? Data are not just spreadsheets and numbers, but come in many different shapes, colors, and flavors!

You’ve probably heard a lot of “futurists” talk about data, but it’s not always clear how data relate to our day to day work in libraries.

Why are data important, and what’s the big deal? Data are not just spreadsheets and numbers, but come in many different shapes, colors, and flavors! In this presentation, we will give an introduction to data, talk about why it is relevant, and demonstrate how to and use data in practical situations. We will also provide innovative examples that will inspire you to connect with your colleagues and patrons!

ContributorsHarp, Matthew (Author) / Perry, Anali Maughan (Author) / Arizona State University. ASU Library (Contributor)
Created2016-10-20
Description

Digital technology has enabled us to record and share our memories and histories faster and in greater numbers than previously imagined. However digital files rely on hardware, software, and descriptive information to be used. As formats change and equipment to read them goes out of use we are all challenged

Digital technology has enabled us to record and share our memories and histories faster and in greater numbers than previously imagined. However digital files rely on hardware, software, and descriptive information to be used. As formats change and equipment to read them goes out of use we are all challenged to connect our present to our future. How long do you want your digital files to last? Decades or even a few years from now will you still be able to access and enjoy those pictures, documents and other digital items you create today?

Libraries, museums and archives spend countless hours and resources preserving physical items from the past and present, but may be forfeiting the longevity of our digital work and connecting to future generations through unintended neglect. Using practical examples and employing best practices of research institutions, participants will learn important first steps to digital preservation including the importance of metadata to personal history, recommended file formats, and approaches they can immediately use to ensure the work they create today will still be enjoyed tomorrow. Help yourself, your organization, and your patrons continue to connect their digital heritage to the generations yet to come.

ContributorsHarp, Matthew (Author) / Dyal, Samuel (Author) / Arizona State University. ASU Library (Contributor)
Created2015-11-20
Description

The Arizona State University Libraries’ fun Library Minute video series brings information about resource and services to a large student body. For the first time, we present a workshop walking through the entire production process from start to finish and offering suggestions on how to fit multimedia into your marketing

The Arizona State University Libraries’ fun Library Minute video series brings information about resource and services to a large student body. For the first time, we present a workshop walking through the entire production process from start to finish and offering suggestions on how to fit multimedia into your marketing and outreach strategy. In this session, we will produce a short video with participants in three steps:

1. Conceptualization and Planning.
2. Recording.
3. Editing and Distribution.

Digital Production Manger Matthew Harp will demonstrate the tools and process and elaborate on the use of social media, YouTube, and the Internet Archive in the distribution plan. Together with Mimmo Bonanni and Library Minute Host Anali Perry, we’ll share our tips and tricks for video production using whatever resources are available.

Presented at the 2011 Arizona Library Association Conference 2011 - Tucson, Arizona

ContributorsHarp, Matthew (Author) / Bonanni, Mimmo (Author) / Perry, Anali Maughan (Author)
Created2011-11-08