Matching Items (7)
Filtering by

Clear all filters

Description
Restraint stress is the most commonly used laboratory stressor. It is difficult to characterize as psychological or physical, because past studies show psychological features, but the nature of confinement adds a physical dimension. This was the first study to investigate how experience with restraint stress affects brain response to the

Restraint stress is the most commonly used laboratory stressor. It is difficult to characterize as psychological or physical, because past studies show psychological features, but the nature of confinement adds a physical dimension. This was the first study to investigate how experience with restraint stress affects brain response to the next stress without a physical burden. Pair-housed adult male rats were transported to a novel context and restrained or left undisturbed (6hr). The next day, rats were returned to the same context and were either restrained or left undisturbed in the context (n=8/group). After 90min, rats were euthanized to determine functional activation in limbic structures using Fos immunohistochemistry and to measure HPA axis reactivity through blood serum corticosterone levels. Regardless of day 1 experience, context exposure on day 2 enhanced Fos expression in CA1 and CA3 of the hippocampus, basolateral amygdala, and central amygdala. Conversely, other regions and corticosterone levels demonstrated modulation from the previous day's experience. Specifically, rats that were placed back into the restraint context but not restrained on day 2 showed enhanced Fos expression in the dentate gyrus suprapyramidal blade (DGSup), and infralimbic cortex (IL). Also Fos expression was attenuated in rats that received two restraint exposures in the IL and medial amygdala (MEA), suggesting habituation. Only the DG infrapyramidal blade (DGInf) showed enhanced Fos expression to restraint on day 2 without influence of the previous day. While context predominately directed Fos activation, prior experience with restraint influenced Fos expression in the DGSup, IL, MEA and corticosterone levels to support restraint having psychological components.
ContributorsAnouti, P. Danya (Author) / Conrad, D. Cheryl (Thesis director) / Hammer, Ronald (Committee member) / Hoffman, N. Ann (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
132248-Thumbnail Image.png
Description
The amphibian pathogen Ambystoma Tigrinum Virus (ATV) has been an important topic of study within the amphibian community since its discovery. ATV threatens many salamander populations across the US, including those in east-central and southeast Arizona. These populations remain at risk since there are no treatments available. In this thesis,

The amphibian pathogen Ambystoma Tigrinum Virus (ATV) has been an important topic of study within the amphibian community since its discovery. ATV threatens many salamander populations across the US, including those in east-central and southeast Arizona. These populations remain at risk since there are no treatments available. In this thesis, a novel method of inactivation is tested to produce a vaccine with the aim of safely eliciting an immune response within the salamander host. This novel form of inactivation has been tested on several human pathogens but has yet to be used on amphibian pathogens. It has the potential to revolutionize our traditional approach to inactivating viruses. After laser treatment, viral plaque assays suggested that inactivated ATV ceased to grow completely, pointing to the possibility of creating a vaccine. Animal challenge trials were conducted with 60 juvenile Ambystoma tigrinum, but surprisingly there was no protective effect from viral inactivation. Further study is needed to clarify why in vitro and in vivo tests of viral inactivation produced contradictory results.
ContributorsVazquez, Luis Ernesto (Author) / Collins, James (Thesis director) / Tsen, Kong-Thon (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132488-Thumbnail Image.png
Description
Infectious disease in wild animals has historically been a challenge that is difficult to overcome, primarily because isolating a disease outbreak to prevent further transmission in these types of populations is nearly impossible. Wild animals are free to roam, and humans often have limited means of tracking infection in populations.

Infectious disease in wild animals has historically been a challenge that is difficult to overcome, primarily because isolating a disease outbreak to prevent further transmission in these types of populations is nearly impossible. Wild animals are free to roam, and humans often have limited means of tracking infection in populations. Vaccines and treatments can be formulated but are often somewhat impractical for wild populations because it is not feasible to vaccinate or treat every member in a susceptible community. One such pathogen, Batrochochytrium dendrobatidis (Bd) is infecting amphibian populations around the world to the point where many species are already extinct. Even though finding an effective preventative for the fungal pathogen may not mean that I am able to reach every member in a population, it may mean the difference between extinction and eventual release back into the wild for threatened populations.
In this study I hoped to create an attenuated version of Batrochochytrium dendrobatidis, by using a novel laser technology: SEPHODIS. This laser technology disrupts hydrogen bonds between proteins in the lumen of the cell while simultaneously preserving the membrane and associated proteins on the outside of the cell. This process ultimately affects the pathogenicity of the target but leaves identity markers intact so that the host immune system may recognize the pathogen and create antibodies against it. The laser was ultimately effective at killing Bd fungal cells, and I did observe a significant change in the appearance of the cells. However, samples obtained after exposure to the laser were contaminated and more research is needed to determine if SEPHODIS could be a feasible method for vaccine production.
ContributorsRidley, Kylie Madison (Author) / Collins, James (Thesis director) / Tsen, Kong-Thon (Committee member) / Brus, Evan (Committee member) / School of Art (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132611-Thumbnail Image.png
Description
Consequences of drug abuse and addiction affect both men and women, but women tend to rapidly progress through drug addiction phases, have higher drug dependency, and have higher relapse rates. Ovarian hormones fluctuate with female reproductive cycles and are thought to cause increased sensitivity to psychostimulants. Additionally, intermittent social defeat

Consequences of drug abuse and addiction affect both men and women, but women tend to rapidly progress through drug addiction phases, have higher drug dependency, and have higher relapse rates. Ovarian hormones fluctuate with female reproductive cycles and are thought to cause increased sensitivity to psychostimulants. Additionally, intermittent social defeat stress induces social avoidance, weight loss, and long-lasting cross-sensitization to psychostimulants, which is associated with increased FosB/ΔFosB expression in the nucleus accumbens (NAc) shell. In this study, we examined the estrous cycle in female rats on social defeat stress-induced amphetamine cross-sensitization through FosB/ΔFosB expression in the NAc shell. Every third day for ten days, we induced social defeat stress in rats through short confrontations with a lactating female resident rat and her pups. In parallel, a group of rats were handled for control. Vaginal swabs were taken daily to assess estrous stage. Ten days after the last stress exposure, rats were administered a low dose of amphetamine (0.5 mg/kg, i.p.), which induced cross-sensitization in stressed rats, evidenced by enhanced locomotor activity. Approximately 3-10 days after amphetamine challenge, brain tissue was collected for immunohistochemistry analyses. Stressed female rats had lower body weight gain, higher social avoidance, and increased FosB/ΔFosB expression in the NAc shell. Differences in FosB/ΔFosB expression in the NAc shell was also observed in handled animals in different estrous stages. Furthermore, rats in proestrous/estrous stages displayed enhanced social defeat stress-induced amphetamine cross-sensitization in comparison to rats in metestrous/diestrous stages. Elucidating the effects of the female reproductive cycle on drug use may provide a novel approach to treatments or therapies in preventing women’s stress-induced vulnerability to substance abuse.
ContributorsAzuma, Alyssa (Author) / Neisewander, Janet (Thesis director) / Nikulina, Ella (Thesis director) / Hammer, Ronald (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Watts College of Public Service & Community Solut (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133512-Thumbnail Image.png
Description
The objective of this thesis was to determine whether Zika Virus (ZIKV) can be effectively inactivated by Selective Photonic Disinfection (SEPHODIS) and determine whether key proteins involved in the infection process are preserved, making SEPHODIS a possible source for vaccine development. As of January 2018, there have been 3,720 confirmed

The objective of this thesis was to determine whether Zika Virus (ZIKV) can be effectively inactivated by Selective Photonic Disinfection (SEPHODIS) and determine whether key proteins involved in the infection process are preserved, making SEPHODIS a possible source for vaccine development. As of January 2018, there have been 3,720 confirmed cases of Congenital Zika Syndrome in infants, making a Zika Vaccine a high priority (Mitchell, 2018). SEPHODIS is a process that involves prolonged exposure of an object to a pulsing laser which can render it ineffective. Initially, ZIKV was subjected to laser inactivation for 6 hours, then a plaque assay was performed on both laser-treated and control samples. ZIKV was inactivated two-fold? after laser treatment, when compared with control, as indicated by the plaque assay results. Additionally, both samples were submitted to ELISA to evaluate antigenicity with a panel of monoclonal and human sera. As a second control, virus inactivated by formaldehyde (2%) was used. ELISA results showed that antigenicity of some proteins were preserved while others were probably disturbed. However, ELISA results show that ZIKV envelope protein (E-protein), the protein responsible for viral entry into cells, was effectively preserved after laser-treatment, implying that if laser parameters were tweaked to obtain more complete inactivation, then SEPHODIS may be an appropriate source for the development of a vaccine.
ContributorsViafora, Ataiyo Blue (Author) / Johnston, Stephen (Thesis director) / Tsen, Kong-Thon (Committee member) / School of Life Sciences (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133289-Thumbnail Image.png
Description
Each year the hospitals in the United States dispose of viable medications worth millions of dollars. These facilities are currently forced to do so not because the medications have expired, or are no longer effective, but rather because to re-use any leftover medications would allow for the possibility of spreading

Each year the hospitals in the United States dispose of viable medications worth millions of dollars. These facilities are currently forced to do so not because the medications have expired, or are no longer effective, but rather because to re-use any leftover medications would allow for the possibility of spreading disease. Once a medications sterile seal has been broken, any remaining contents of its container are considered potential pathogenic biohazards, and must be disposed of. The main objective of this thesis was to explore a potential alternative to simply discarding these lifesaving and often expensive leftover medications. The ultimate goal of this work is to establish a process by which excess drugs could be safely and effectively purified for re-use, subsequently cutting costs, and enhancing medication availability. Pseudomonas aeruginosa (P.a.) and Staphylococcus aureus (S.a) were cultured for their commonality in healthcare-associated infections (HAI's), and allowed to contaminate medication-like compounds. These bacterially inoculated solutions were meant to mimic the contaminated medications mentioned above and were then treated with a novel, physical means of pathogen inactivation named SElective PHOtonic DISinfection (SEPHODIS). Pathogen load reduction was determined through plate count assays both before and after exposure to the SEPHODIS system. structural preservation of medication was established through the use of infrared spectroscopy. The results of these experiments furthered the confidence of SEPHODIS as an efficient means of pathogen inactivation, while promoting promise of a real-world application in the form of medication purification.
ContributorsKutemeier, Hayden (Author) / Bean, Heather (Thesis director) / Tsen, Kong-Thon (Committee member) / Barrett, The Honors College (Contributor)
Created2018-05
165289-Thumbnail Image.png
Description

Ultra-short-pulse (USP) lasers in the visible range have been shown to have widespread sterilizing effects on pathogens, which is believed to be caused by mechanical perturbations induced in the pathogen that disrupt essential processes leading to inactivation. This paper demonstrates a complete inactivation of Zika virus, a single-stranded enveloped RNA

Ultra-short-pulse (USP) lasers in the visible range have been shown to have widespread sterilizing effects on pathogens, which is believed to be caused by mechanical perturbations induced in the pathogen that disrupt essential processes leading to inactivation. This paper demonstrates a complete inactivation of Zika virus, a single-stranded enveloped RNA virus, using USP-laser technology and adds to the growing body of literature on the effectiveness of USP-laser inactivation. The paper also surveys previous inactivation studies to draw inferences about the nature of the Zika virus inactivation. We suggest that the method of inactivation in Zika virus is the selective amalgamation of viral capsid proteins into a nonfunctional mass of proteins because of the laser-induced vibrations, which mechanically prevents the release of viral RNA. The survey of similar inactivation experiments also supports the notion that the viral antigens might be unaffected by USP-laser inactivation, justifying the exploration of vaccine development using USP-laser inactivated Zika virus.

ContributorsLangland, Dylan (Author) / Tsen, Kong-Thon (Thesis director) / Kibler, Karen (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05