Matching Items (13,055)
Filtering by

Clear all filters

150034-Thumbnail Image.png
Description
Being properly prepared is one of the keys to surviving an emergency or a disaster. In order to be prepared, people need appropriate education in preparedness, which includes elements of prevention, and planning. There is a definite need to better prepare our nation's citizens in order for them to safely

Being properly prepared is one of the keys to surviving an emergency or a disaster. In order to be prepared, people need appropriate education in preparedness, which includes elements of prevention, and planning. There is a definite need to better prepare our nation's citizens in order for them to safely respond in times of a disaster. It also seems likely that the earlier concepts and skills are learned, the easier those concepts and skills would be to remember and the more proficient one would become in implementing them. Therefore, it seems appropriate to teach emergency preparedness concepts and skills early on in the educational process. This means that significant efforts need to be directed toward learning, what impediments currently exist, what is helpful, and how preparedness concepts and skills can be taught to our children. A survey was distributed to third, fourth, and fifth grade teachers, asking them questions about emergency preparedness lessons in the classroom. Results indicated that the majority of teachers would be willing to teach emergency preparedness if the curriculum met current academic standards and they were given adequate resources to teach this subject. This study provides ideas, concepts and motivation for teachers to use in a cross-curricular approach to teaching emergency preparedness in the classroom. This is accomplished by presenting examples of newly developed curriculum/lesson plans that meet state academic standards, based on the current Community Emergency Response Team program and on children's fiction literature for the appropriate age group. A list of literature that could be used in this development is also provided in this study.
ContributorsChristensen, Christian B (Author) / Edwards, David (Thesis advisor) / Olson, Larry (Committee member) / Peterson, Danny (Committee member) / Arizona State University (Publisher)
Created2011
150035-Thumbnail Image.png
Description
Concrete columns constitute the fundamental supports of buildings, bridges, and various other infrastructures, and their failure could lead to the collapse of the entire structure. As such, great effort goes into improving the fire resistance of such columns. In a time sensitive fire situation, a delay in the failure of

Concrete columns constitute the fundamental supports of buildings, bridges, and various other infrastructures, and their failure could lead to the collapse of the entire structure. As such, great effort goes into improving the fire resistance of such columns. In a time sensitive fire situation, a delay in the failure of critical load bearing structures can lead to an increase in time allowed for the evacuation of occupants, recovery of property, and access to the fire. Much work has been done in improving the structural performance of concrete including reducing column sizes and providing a safer structure. As a result, high-strength (HS) concrete has been developed to fulfill the needs of such improvements. HS concrete varies from normal-strength (NS) concrete in that it has a higher stiffness, lower permeability and larger durability. This, unfortunately, has resulted in poor performance under fire. The lower permeability allows for water vapor to build up causing HS concrete to suffer from explosive spalling under rapid heating. In addition, the coefficient of thermal expansion (CTE) of HS concrete is lower than that of NS concrete. In this study, the effects of introducing a region of crumb rubber concrete into a steel-reinforced concrete column were analyzed. The inclusion of crumb rubber concrete into a column will greatly increase the thermal resistivity of the overall column, leading to a reduction in core temperature as well as the rate at which the column is heated. Different cases were analyzed while varying the positioning of the crumb-rubber region to characterize the effect of position on the improvement of fire resistance. Computer simulated finite element analysis was used to calculate the temperature and strain distribution with time across the column's cross-sectional area with specific interest in the steel - concrete region. Of the several cases which were investigated, it was found that the improvement of time before failure ranged between 32 to 45 minutes.
ContributorsZiadeh, Bassam Mohammed (Author) / Phelan, Patrick (Thesis advisor) / Kaloush, Kamil (Thesis advisor) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2011
150036-Thumbnail Image.png
Description
Demand for biosensor research applications is growing steadily. According to a new report by Frost & Sullivan, the biosensor market is expected to reach $14.42 billion by 2016. Clinical diagnostic applications continue to be the largest market for biosensors, and this demand is likely to continue through 2016 and beyond.

Demand for biosensor research applications is growing steadily. According to a new report by Frost & Sullivan, the biosensor market is expected to reach $14.42 billion by 2016. Clinical diagnostic applications continue to be the largest market for biosensors, and this demand is likely to continue through 2016 and beyond. Biosensor technology for use in clinical diagnostics, however, requires translational research that moves bench science and theoretical knowledge toward marketable products. Despite the high volume of academic research to date, only a handful of biomedical devices have become viable commercial applications. Academic research must increase its focus on practical uses for biosensors. This dissertation is an example of this increased focus, and discusses work to advance microfluidic-based protein biosensor technologies for practical use in clinical diagnostics. Four areas of work are discussed: The first involved work to develop reusable/reconfigurable biosensors that are useful in applications like biochemical science and analytical chemistry that require detailed sensor calibration. This work resulted in a prototype sensor and an in-situ electrochemical surface regeneration technique that can be used to produce microfluidic-based reusable biosensors. The second area of work looked at non-specific adsorption (NSA) of biomolecules, which is a persistent challenge in conventional microfluidic biosensors. The results of this work produced design methods that reduce the NSA. The third area of work involved a novel microfluidic sensing platform that was designed to detect target biomarkers using competitive protein adsorption. This technique uses physical adsorption of proteins to a surface rather than complex and time-consuming immobilization procedures. This method enabled us to selectively detect a thyroid cancer biomarker, thyroglobulin, in a controlled-proteins cocktail and a cardiovascular biomarker, fibrinogen, in undiluted human serum. The fourth area of work involved expanding the technique to produce a unique protein identification method; Pattern-recognition. A sample mixture of proteins generates a distinctive composite pattern upon interaction with a sensing platform consisting of multiple surfaces whereby each surface consists of a distinct type of protein pre-adsorbed on the surface. The utility of the "pattern-recognition" sensing mechanism was then verified via recognition of a particular biomarker, C-reactive protein, in the cocktail sample mixture.
ContributorsChoi, Seokheun (Author) / Chae, Junseok (Thesis advisor) / Tao, Nongjian (Committee member) / Yu, Hongyu (Committee member) / Forzani, Erica (Committee member) / Arizona State University (Publisher)
Created2011
150037-Thumbnail Image.png
Description
Intimate coupling of Ti2 photocatalysis and biodegradation (ICPB) offers potential for degrading biorecalcitrant and toxic organic compounds much better than possible with conventional wastewater treatments. This study reports on using a novel sponge-type, Ti2-coated biofilm carrier that shows significant adherence of Ti2 to its exterior and the ability to accumulate

Intimate coupling of Ti2 photocatalysis and biodegradation (ICPB) offers potential for degrading biorecalcitrant and toxic organic compounds much better than possible with conventional wastewater treatments. This study reports on using a novel sponge-type, Ti2-coated biofilm carrier that shows significant adherence of Ti2 to its exterior and the ability to accumulate biomass in its interior (protected from UV light and free radicals). First, this carrier was tested for ICPB in a continuous-flow photocatalytic circulating-bed biofilm reactor (PCBBR) to mineralize biorecalcitrant organic: 2,4,5-trichlorophenol (TCP). Four mechanisms possibly acting of ICPB were tested separately: TCP adsorption, UV photolysis/photocatalysis, and biodegradation. The carrier exhibited strong TCP adsorption, while photolysis was negligible. Photocatalysis produced TCP-degradation products that could be mineralized and the strong adsorption of TCP to the carrier enhanced biodegradation by relieving toxicity. Validating the ICPB concept, biofilm was protected inside the carriers from UV light and free radicals. ICPB significantly lowered the diversity of the bacterial community, but five genera known to biodegrade chlorinated phenols were markedly enriched. Secondly, decolorization and mineralization of reactive dyes by ICPB were investigated on a refined Ti2-coated biofilm carrier in a PCBBR. Two typical reactive dyes: Reactive Black 5 (RB5) and Reactive Yellow 86 (RY86), showed similar first-order kinetics when being photocatalytically decolorized at low pH (~4-5), which was inhibited at neutral pH in the presence of phosphate or carbonate buffer, presumably due to electrostatic repulsion from negatively charged surface sites on Ti2, radical scavenging by phosphate or carbonate, or both. In the PCBBR, photocatalysis alone with Ti2-coated carriers could remove RB5 and COD by 97% and 47%, respectively. Addition of biofilm inside macroporous carriers maintained a similar RB5 removal efficiency, but COD removal increased to 65%, which is evidence of ICPB despite the low pH. A proposed ICPB pathway for RB5 suggests that a major intermediate, a naphthol derivative, was responsible for most of the residual COD. Finally, three low-temperature sintering methods, called O, D and DN, were compared based on photocatalytic efficiency and Ti2 adherence. The DN method had the best Ti2-coating properties and was a successful carrier for ICPB of RB5 in a PCBBR.
ContributorsLi, Guozheng (Author) / Rittmann, Bruce E. (Thesis advisor) / Halden, Rolf (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2011
150038-Thumbnail Image.png
Description
In a large network (graph) it would be desirable to guarantee the existence of some local property based only on global knowledge of the network. Consider the following classical example: how many connections are necessary to guarantee that the network contains three nodes which are pairwise adjacent? It turns out

In a large network (graph) it would be desirable to guarantee the existence of some local property based only on global knowledge of the network. Consider the following classical example: how many connections are necessary to guarantee that the network contains three nodes which are pairwise adjacent? It turns out that more than n^2/4 connections are needed, and no smaller number will suffice in general. Problems of this type fall into the category of ``extremal graph theory.'' Generally speaking, extremal graph theory is the study of how global parameters of a graph are related to local properties. This dissertation deals with the relationship between minimum degree conditions of a host graph G and the property that G contains a specified spanning subgraph (or class of subgraphs). The goal is to find the optimal minimum degree which guarantees the existence of a desired spanning subgraph. This goal is achieved in four different settings, with the main tools being Szemeredi's Regularity Lemma; the Blow-up Lemma of Komlos, Sarkozy, and Szemeredi; and some basic probabilistic techniques.
ContributorsDeBiasio, Louis (Author) / Kierstead, Henry A (Thesis advisor) / Czygrinow, Andrzej (Thesis advisor) / Hurlbert, Glenn (Committee member) / Kadell, Kevin (Committee member) / Fishel, Susanna (Committee member) / Arizona State University (Publisher)
Created2011
150039-Thumbnail Image.png
Description
The intent of this research is to determine if cool roofs lead to increased energy use in the U.S. and if so, in what climates. Directed by the LEED environmental building rating system, cool roofs are increasingly specified in an attempt to mitigate urban heat island effect. A typical single

The intent of this research is to determine if cool roofs lead to increased energy use in the U.S. and if so, in what climates. Directed by the LEED environmental building rating system, cool roofs are increasingly specified in an attempt to mitigate urban heat island effect. A typical single story retail building was simulated using eQUEST energy software across seven different climatic zones in the U.S.. Two roof types are varied, one with a low solar reflectance index of 30 (typical bituminous roof), and a roof with SRI of 90 (high performing membrane roof). The model also varied the perimeter / core fraction, internal loads, and schedule of operations. The data suggests a certain point at which a high SRI roofing finish results in energy penalties over the course of the year in climate zones which are heating driven. Climate zones 5 and above appear to be the flipping point, beyond which the application of a high SRI roof creates sufficient heating penalties to outweigh the cooling energy benefits.
ContributorsLee, John (Author) / Bryan, Harvey (Thesis advisor) / Marlin, Marlin (Committee member) / Ramalingam, Muthukumar (Committee member) / Arizona State University (Publisher)
Created2011
150040-Thumbnail Image.png
Description
The Kasturba Gandhi Balika Vidyalaya (KGBV) policy scheme launched in 2004 by the Ministry of Human Resource Development, the Government of India, aims to provide secondary level education (grade 6-8) for girls residing predominantly in minority communities, the Scheduled Caste (SC), the Scheduled Tribe (ST), and the Other Backward Caste

The Kasturba Gandhi Balika Vidyalaya (KGBV) policy scheme launched in 2004 by the Ministry of Human Resource Development, the Government of India, aims to provide secondary level education (grade 6-8) for girls residing predominantly in minority communities, the Scheduled Caste (SC), the Scheduled Tribe (ST), and the Other Backward Caste (OBC). Since its launch, the Government of India established 2,578 KGBV schools in 27 states and union territories (UTs). The present study examines the new policy and its implementation at three KGBV schools located in rural villages of Uttar Pradesh (UP), India. The purpose was to analyze the Government of India's approach to increasing education opportunity and participation for educationally disadvantaged girls using the empowerment framework developed by Deepa Narayan. Observations at three schools, interviews with teachers and staff members of the implementation agency (i.e., Mahila Samakhya (MS)), and surveys administered to 139 teachers were conducted over a four month period in 2009. Adopting creative teaching approaches and learning activities, MS creates safe learning community which is appropriate for the rural girls. MS gives special attention to nurturing the girls' potential and empowering them inside and outside the school environment through social discussion, parental involvement, rigid discipline and structure, health and hygiene education, and physical and mental training. Interviews with the state program director and coordinators identified some conflicts within government policy schemes such as the Teacher-pupil ratios guidelines as a part of the programs for the universalization of elementary education. Major challenges include a high turnover rate of teachers, a lack of female teachers, a lack of provision after Class 8, and inadequate budget for medical treatment. Recommendations include promoting active involvement of male members in the process of girls' empowerment, making MS approaches of girls' education in rural settings standardized for wider dissemination, and developing flexible and strong partnership among local agencies and government organizations for effective service delivery.
ContributorsWatanabe, Miku (Author) / Fischman, Gustavo (Thesis advisor) / Wiley, Terrence (Committee member) / Mccarty, Teresa (Committee member) / Arizona State University (Publisher)
Created2011
150041-Thumbnail Image.png
Description
The under-representation of women in science, technology, engineering and mathematics (STEM) fields indicates the presence of gender related barriers that impacted the persistence of women in science and engineering doctoral studies. The purpose of this study was to investigate the barriers of women doctoral students in STEM fields which identified

The under-representation of women in science, technology, engineering and mathematics (STEM) fields indicates the presence of gender related barriers that impacted the persistence of women in science and engineering doctoral studies. The purpose of this study was to investigate the barriers of women doctoral students in STEM fields which identified supporting factors for them as well. This study also tried to determine if there was any difference in perceiving barriers among three disciplines - engineering, life sciences and natural sciences. An online questionnaire (19 Likert-type questions and one open-ended question) was sent to women STEM doctoral students studying at the Arizona State University (ASU). Questions were based on some factors which might act as obstacles or supports during their doctoral studies. Both quantitative and qualitative analyses were conducted. Factors such as work-life balance, time-management, low self-confidence, lack of female role model, fewer numbers of women in science and engineering classes, and male dominated environment revealed as significant barriers according to both the analyses but factors such as difficulty with the curriculum, gender discrimination, and two-career problem were chosen as barriers only in the free response question. Positive treatment from advisor, family support, availability of funding, and absence of sexual harassment assisted these women continuing their PhD programs at ASU. However, no significant difference was observed with respect to perceiving barriers among the three groups mentioned above. Recommendations for change in science and engineering curricula and active recruitment of female faculty are discussed to reduce or at best to remove the barriers and how to facilitate participation and retention of more women in STEM fields especially at the doctoral level.
ContributorsChaudhuri, Dola (Author) / Baker, Dale (Thesis advisor) / Sandlin, Jennifer (Committee member) / Edwards, Vicki (Committee member) / Arizona State University (Publisher)
Created2011
150042-Thumbnail Image.png
Description
This study examined the influence of childhood aggression, peer exclusion and associating with deviant peers on the development of antisocial behavior in early adolescence. To gain a stronger understanding of how these factors are associated with antisocial behavior and delinquency, multiple alternative pathways were examined based on additive, mediation and

This study examined the influence of childhood aggression, peer exclusion and associating with deviant peers on the development of antisocial behavior in early adolescence. To gain a stronger understanding of how these factors are associated with antisocial behavior and delinquency, multiple alternative pathways were examined based on additive, mediation and incidental models. A parallel process growth model was specified to assess whether early childhood aggression and peer exclusion (in 1st grade) and intra-individual increases in aggressive behaviors and exclusion through childhood (grades 1 to 6) are predictive of associating with deviant peers (in 7th grade) and antisocial behavior (in 8th grade). Based on a sample of 383 children (193 girls and 190 boys), results showed the strongest support for an additive effects model in which early childhood aggression, increases in aggression, increases in peer exclusion and associating with more deviant peers all predicted antisocial behavior. These findings have implications for how children's psychological adjustment is impacted by their behavioral propensities and peer relational context and the importance of examining developmental processes within and between children over time.
ContributorsEttekal, Idean (Author) / Ladd, Gary W (Thesis advisor) / Eggum, Natalie D (Committee member) / Thompson, Marilyn S (Committee member) / Arizona State University (Publisher)
Created2011
150043-Thumbnail Image.png
Description
The increasing isolation and segregation of children in American cities and suburbs is of special significance. This has meant a loss of freedom for children to explore their neighborhood and city as they get older, their exclusion from varied contacts with diverse adults in a variety of settings, and their

The increasing isolation and segregation of children in American cities and suburbs is of special significance. This has meant a loss of freedom for children to explore their neighborhood and city as they get older, their exclusion from varied contacts with diverse adults in a variety of settings, and their consequent inability to learn from personal experience and observation, so essential to social and emotional development. The purpose of this study is to measure the differences in child-friendliness between neighborhoods with different income levels by developing an indicator framework that can be used by planning departments and other local authorities based on available data. The research also focus on what other factor (besides income) influences child-friendliness in a city at the neighborhood level. If a relationship does exist, how big is the difference in terms of child-friendliness between low-income and high-income neighborhoods, and what indicators play the most important role in creating the difference? Neighborhoods in the city of Glendale, Arizona serve as case studies to aid in refining the assessment method, and show the potential for how cities can become more child-friendly. The neighborhoods were selected based on income, same size and different location.
ContributorsRakhimova, Nelya (Author) / Stein, Jay (Thesis advisor) / Pijawka, David (Committee member) / Crewe, Katherine (Committee member) / Arizona State University (Publisher)
Created2011