Matching Items (1,234)
Filtering by

Clear all filters

175247-Thumbnail Image.jpg
Description

The figure depicts three different molecular structures of estrogen found in mammals’ that differ by the arrangement of bonds and side groups. The molecular structures of the three estrogen molecules differ by the arrangement of chemical bonds and side groups attached to the core steroid structure, cholesterol, which contains three

The figure depicts three different molecular structures of estrogen found in mammals’ that differ by the arrangement of bonds and side groups. The molecular structures of the three estrogen molecules differ by the arrangement of chemical bonds and side groups attached to the core steroid structure, cholesterol, which contains three cyclohexane rings and one cyclopentane ring. Compared to the molecular structure of estriol, the molecular structure of estradiol is missing one oxygen-hydrogen or OH group, and estrone lacks the OH group, and one hydrogen molecule that results in a double bonded oxygen atom. These steroid hormones bind to specific cell receptor molecules and induce transcriptional changes in cells. The production of estriol increases during pregnancy, estradiol production increases during stages of the menstrual cycle, and estrone levels increase during menopause. The differing bonds and chemical arrangements enable scientists to determine the different concentrations of the molecules.

Created2017-05-18
Description

“Test-tube baby” is a term used to refer to a baby produced through artificial insemination or in vitro fertilization, also called IVF. During artificial insemination, a physician injects carefully selected sperm into a women’s uterus to fertilize her eggs. During IVF, a trained professional harvests eggs from a female donor.

“Test-tube baby” is a term used to refer to a baby produced through artificial insemination or in vitro fertilization, also called IVF. During artificial insemination, a physician injects carefully selected sperm into a women’s uterus to fertilize her eggs. During IVF, a trained professional harvests eggs from a female donor. Those eggs are fertilized with carefully selected sperm in a petri dish. Those fertilized eggs are allowed to divide and grow in the dish for four days, at which point the trained professional inserts those eggs into the uterus of a female so she can carry the pregnancy.

Created2021-08-13
175256-Thumbnail Image.jpg
Description

Y-chromosomes exist in the body cells of many kinds of male animals. Found in the nucleus of most living animal cells, the X and Y-chromosomes are condensed structures made of DNA wrapped around proteins called histones. The individual histones bunch into groups that the coiled DNA wraps around called a

Y-chromosomes exist in the body cells of many kinds of male animals. Found in the nucleus of most living animal cells, the X and Y-chromosomes are condensed structures made of DNA wrapped around proteins called histones. The individual histones bunch into groups that the coiled DNA wraps around called a nucleosome, which are roughly 10 nano-meters (nm) across. The histones bunch together to form a helical fiber (30 nm) that spins into a supercoil (200 nm). During much of a cell's life, DNA exists in the 200 nm supercoil phase. But when DNA replicates itself, supercoils condense further into visible chromosomes with diameters of about 1400 nm. The X- and Y-chromosomes carry the genetic information that determines the sex of many types of animals. The Y-chromosome contains a gene called the sex-determining region Y, or the SRY gene in humans. If a fertilized egg, called a zygote, has the SRY gene, the zygote develops normally into an adult organism with male sex traits. Zygotes without the SRY gene develop to have female traits. Zygotes with Y-chromosomes but mutated SRY genes can develop into adult organisms that have female traits.

Created2017-02-06
175265-Thumbnail Image.jpg
Description

The crystal jellyfish, Aequorea victoria, produces and emits light, called bioluminescence. Its DNA codes for sequence of 238 amino acids that forms a protein called Green Fluorescent Protein (GFP). FP is folded so that a part of the protein, called the chromophore, is located in the center of the protein.

The crystal jellyfish, Aequorea victoria, produces and emits light, called bioluminescence. Its DNA codes for sequence of 238 amino acids that forms a protein called Green Fluorescent Protein (GFP). FP is folded so that a part of the protein, called the chromophore, is located in the center of the protein. The chemical structure of the chromophore emits a green fluorescence when exposed to light in the range of blue to ultraviolet.

Created2017-02-06
Description

During the mid-twentieth century, Virginia Apgar worked as an obstetrical anesthesiologist and gave drugs to women that reduced their pain during childbirth in the US. In 1953, Apgar created a scoring system, called the Apgar score, that uses five measurements, including heart rate and breathing rate. The Apgar score evaluates

During the mid-twentieth century, Virginia Apgar worked as an obstetrical anesthesiologist and gave drugs to women that reduced their pain during childbirth in the US. In 1953, Apgar created a scoring system, called the Apgar score, that uses five measurements, including heart rate and breathing rate. The Apgar score evaluates newborn infants and determines who needs immediate medical attention. Apgar's work helped decrease infant mortality rates. As of 2020, hospitals around the world use the Apgar score.

Created2021-08-12
175192-Thumbnail Image.jpg
Description

This diagram shows the life cycle of Neurospora crassa, a mold that grows on bread. N. crassa can reproduce through an asexual cycle or a sexual cycle. The asexual cycle (colored as a purple circle), begins in this figure with (1a) vegetative mycelium, which are strands of mature fungus. Some

This diagram shows the life cycle of Neurospora crassa, a mold that grows on bread. N. crassa can reproduce through an asexual cycle or a sexual cycle. The asexual cycle (colored as a purple circle), begins in this figure with (1a) vegetative mycelium, which are strands of mature fungus. Some of the strands form bulbs (2a) in a process called conidiation. From those bulbs develop the conidia, which are spores. Next, (3a) a single conidium separates from its strand and elongates until it forms mycelium. The sexual cycle (colored as an orange circle) also starts with the (1b) vegetative mycelium. The strands develop into a structure called the proto-perithecium, and reproduction involves the proto-perithecium interacting with the conidia from a different mycelium. Reproduction also involves two mating types, called type A and type a. In reproduction, type A pairs with type a, and a conidium can be of either type, as can a proto-perithecium. A proto-perithecium fertilized by a conidium of the opposite mating type (2b) will develop into a perithecium. Inside the perithecium, croziers develop and mature into asci. (3b) In a maturing ascus, there are two nuclei (one represented as a white circle and one as a black circle), one of which comes from the conidium and the other from the proto-perithecium. Each nuclei has only one set of chromosomes (haploid). The two haploid nuclei fuse into a diploid nucleus (represented as a half black half white circle). The nucleus then divides, separating into two nuclei each with one set of chromosomes. Those nuclei duplicate themselves (represented as two white circles and two black circles), and then all the nuclei duplicate themselves again (represented as four white circles and four black circles). This process yields eight haploid ascospores within a mature ascus. Ascospores are spores, and function for the mold as do seeds for plants. The mature perithecium releases its ascospores (4b), which germinate and grow into mycelium. In the 1930s and 1940s, George Beadle and Ed Tatum collected the spores of irradiated N. crassa to study how genes produced enzymes.

Created2016-10-12