Matching Items (1,236)
Filtering by

Clear all filters

136782-Thumbnail Image.png
Description
This thesis seeks to provide insight into the challenges rural women in Latin America face in
receiving socio-economic benefits from their participation in collective enterprises. The study
draws upon research from the field of development, entrepreneurship, and cooperatives, focusing
on rural women in Guatemala. The research questions explored are: 1) ‘What is known

This thesis seeks to provide insight into the challenges rural women in Latin America face in
receiving socio-economic benefits from their participation in collective enterprises. The study
draws upon research from the field of development, entrepreneurship, and cooperatives, focusing
on rural women in Guatemala. The research questions explored are: 1) ‘What is known about
entrepreneurial strategies to overcome poverty among rural women in Latin America, specifically
cooperatives and specifically in Guatemala?; and 2) ‘What are the main conditions for the
success of rural women’s vermiculture cooperatives in Guatemala from the perspectives of their
members, in terms a) infrastructure and equipment; b) work arrangements; c) member’s learning;
and d) member’s confidence in the financial success of the coop?’. The study was conducted in
an exploratory manner using case study methodology to provide a richness to study findings. The
study found that pre-conditions for a successful cooperative include a secure and easily accessible
location, and highlights the importance of inclusive leadership, the mastery of basic skills, and
opportunities for learning more advanced business skills.
ContributorsPerez, Natalia (Contributor) / Mook, Laurie (Thesis director) / Gonzales, Vanna (Committee member) / Barrett, The Honors College (Contributor)
Created2014-05
136315-Thumbnail Image.png
Description
This project explores the function of art pedagogy as a tool for social justice, especially for youth. As a student pursuing the study of both education and social justice, the experience I've had in my life with art is hugely connected with these themes. In this exploratory project, I examined

This project explores the function of art pedagogy as a tool for social justice, especially for youth. As a student pursuing the study of both education and social justice, the experience I've had in my life with art is hugely connected with these themes. In this exploratory project, I examined different creative youth development programs through the perspectives of art educators, exploring how, pedagogically, they contribute to the formation of social justice in the communities and students they serve through the teaching and creation of art. I began with the research question, how do different creative youth development contribute to social justice in the communities and students they serve using art as a pedagogical approach? My goal in asking this question was to develop a picture of the art pedagogies employed in these programs, and their relation to the broader topic of social justice. Then, after reviewing the literature related to this topic, which is outlined in the next section, I identified three components of social justice related to art education: self expression, cultural identity exploration, and critical engagement. All of these concepts emerged time and time again when reviewing literature about art education and youth, and also art and social justice. Focusing on these concepts, I explored the question of how these components of social justice are explored in particular creative youth development programs. My goal in asking these questions is to develop a picture of the art pedagogies employed in these programs, and their relation to the broader topic of social justice. In order to ask these questions, it was important I access the art educators behind art programs whose impact is connected to art and social justice. Through their perspectives, I was able to gain incite about the design, implementation, and outcomes of art pedagogy. I found that these programs, in employing art pedagogies, were powerful tools in helping youth connect to themselves and their communities, aiding in the production of social justice.
ContributorsFarrier, Merry Elise (Author) / Swadener, Elizabeth (Thesis director) / Gonzales, Vanna (Committee member) / Barrett, The Honors College (Contributor) / School of Social Transformation (Contributor) / Division of Teacher Preparation (Contributor)
Created2015-05
136899-Thumbnail Image.png
Description
Much research has been devoted to identifying trends in either convergence upon a neoliberal model or divergence among welfare states in connection to globalization, but most research has focused on advanced industrialized countries. This has limited our understanding of the current state of convergence or divergence, especially among welfare states

Much research has been devoted to identifying trends in either convergence upon a neoliberal model or divergence among welfare states in connection to globalization, but most research has focused on advanced industrialized countries. This has limited our understanding of the current state of convergence or divergence, especially among welfare states in developing regions. To address this research gap and contribute to the broader convergence vs. divergence debate, this research explores welfare state variation found within Latin America, in terms of the health policy domain, through the use of cross-national data from 18 countries collected between the period of 1995 to 2010 and the application of a series of descriptive and regression analysis techniques. Analyses revealed divergence within Latin America in the form of three distinct welfare states, and that among these welfare states income inequality, trust in traditional public institutions, and democratization, are significantly related to welfare state type and health performance.
ContributorsJohnson, Kory Alfred (Author) / Martin, Nathan (Thesis director) / Gonzales, Vanna (Committee member) / Barrett, The Honors College (Contributor) / School of Social Transformation (Contributor) / School of Politics and Global Studies (Contributor)
Created2014-05
Description

Human Papillomavirus, or HPV, is a viral pathogen that most commonly spreads through sexual contact. HPV strains 6 and 11 normally cause genital warts, while HPV strains 16 and 18 commonly cause cervical cancer, which causes cancerous cells to spread in the cervix. Physicians can detect those HPV strains, using

Human Papillomavirus, or HPV, is a viral pathogen that most commonly spreads through sexual contact. HPV strains 6 and 11 normally cause genital warts, while HPV strains 16 and 18 commonly cause cervical cancer, which causes cancerous cells to spread in the cervix. Physicians can detect those HPV strains, using a Pap smear, which is a diagnostic test that collects cells from the female cervix.

Created2021-04-06
Description

Johann Gregor Mendel studied patterns of trait inheritance in plants during the nineteenth century. Mendel, an Augustinian monk, conducted experiments on pea plants at St. Thomas’ Abbey in what is now Brno, Czech Republic. Twentieth century scientists used Mendel’s recorded observations to create theories about genetics.

Created2022-01-13
175283-Thumbnail Image.jpg
Description

In the 1930s, George Beadle and Boris Ephrussi discovered factors that affect eye colors in developing fruit flies. They did so while working at the California Institute of Technology in Pasadena, California. (1) They took optic discs (colored fuchsia in the image) from fruit fly larvae in the third instar

In the 1930s, George Beadle and Boris Ephrussi discovered factors that affect eye colors in developing fruit flies. They did so while working at the California Institute of Technology in Pasadena, California. (1) They took optic discs (colored fuchsia in the image) from fruit fly larvae in the third instar stage of development. Had the flies not been manipulated, they would have developed into adults with vermilion eyes. (2) Beadle and Ephrussi transplanted the donor optic discs into the bodies of several types of larvae, including those that would develop with normal colored eyes (brick red), and those that would develop eyes with other shades of red, such as claret, carmine, peach, and ruby (grouped together and colored black in the image). (3a) When implanted into normal hosts that would develop brick red eyes, the transplanted optic disc developed into an eye that also was brick red. (3b) When implanted into abnormal hosts that would develop eyes of some other shade of red, the transplanted optic discs developed into eyes that were vermilion. Beadle and Ephrussi concluded that there was a factor, such as an enzyme or some other protein, produced outside of the optic disc that influenced the color of the eye that developed from the disc.

Created2016-10-11
175286-Thumbnail Image.jpg
Description

This illustration shows George Beadle and Edward Tatum's experiments with Neurospora crassa that indicated that single genes produce single enzymes. The pair conducted the experiments at Stanford University in Palo Alto, California. Enzymes are types of proteins that can catalyze reactions inside cells, reactions that produce a number of things,

This illustration shows George Beadle and Edward Tatum's experiments with Neurospora crassa that indicated that single genes produce single enzymes. The pair conducted the experiments at Stanford University in Palo Alto, California. Enzymes are types of proteins that can catalyze reactions inside cells, reactions that produce a number of things, including nutrients that the cell needs. Neurospora crassa is a species of mold that grows on bread. In the early 1940s, Beadle and Tatum conducted an experiment to discover the abnormal genes in Neurospora mutants, which failed to produce specific nutrients needed to survive. (1) Beadle and Tatum used X-rays to cause mutations in the DNA of Neurospora, and then they grew the mutated Neurospora cells in glassware. (2) They grew several strains, represented in four groups of paired test tubes. For each group, Neurospora was grown in one of two types of growth media. One medium contained all the essential nutrients that the Neurospora needed to survive, which Beadle and Tatum called a complete medium. The second medium was a minimal medium and lacked nutrients that Neurospora needed to survive. If functioning normally and in the right conditions, however, Neurospora can produce these absent nutrients. (3) When Beadle and Tatum grew the mutated mold strains on both the complete and on the minimal media, all of the molds survived on the complete media, but not all of the molds survived on the minimal media (strain highlighted in yellow). (4) For the next step, the researchers added nutrients to the minimal media such that some glassware received an amino acid mixture (represented as colored squares) and other glassware received a vitamin mixture (represented as colored triangles) in an attempt to figure out which kind of nutrients the mutated molds needed. The researchers then took mold from the mutant mold strain that had survived on a complete medium and added that mold to the supplemented minimal media. They found that in some cases the mutated mold grew on media supplemented only with vitamins but not on media supplemented only with amino acids. (5) To discover which vitamins the mutant molds needed, Beadle and Tatum used several tubes with the minimal media, supplementing each one with a different vitamin, and then they attempted to grow the mutant mold in each tube. They found that different mutant strains of the mold grew only on media supplemented with different kinds of vitamins, for instance vitamin B6 for one strain, and vitamin B1 for another. In experiments not pictured, Beadle and Tatum found in step (4) that other strains of mutant mold grew on minimal media supplemented only with amino acids but not on minimal media supplemented only with vitamins. When they repeated step (5) on those strains and with specific kinds of amino acids in the different test tubes, they found that the some mutated mold strains grew on minimal media supplemented solely with one kind of amino acid, and others strains grew only on minimal media supplemented with other kinds of amino acids. For both the vitamins and amino acid cases, Beadle and Tatum concluded that the X-rays had mutated different genes in Neurospora, resulting in different mutant strains of Neurospora cells. In a cell of a given strain, the X-rays had changed the gene normally responsible for producing an enzyme that catalyzed a vitamin or an amino acid. As a result, the Neurospora cell could no longer produce that enzyme, and thus couldn't catalyze a specific nutrient.

Created2016-10-12
Description

The Southern Gastric Brooding Frog (Rheobotrahcus silus) was a frog species that lived in Australia. It was declared extinct in 2002. Once adult males fertilized the eggs of females, the females swallowed their eggs. The stomachs of the females then functioned somewhat like wombs, protecting the eggs while they gestated.

The Southern Gastric Brooding Frog (Rheobotrahcus silus) was a frog species that lived in Australia. It was declared extinct in 2002. Once adult males fertilized the eggs of females, the females swallowed their eggs. The stomachs of the females then functioned somewhat like wombs, protecting the eggs while they gestated. Once the eggs developed into juveniles, female frogs performed oral birth and regurgitated their young.

Created2017-02-06
175295-Thumbnail Image.jpg
Description

Mechanism of Notch Signaling: The image depicts a type of cell signaling, in which two animal cells interact and transmit a molecular signal from one to the other. The process results in the production of proteins, which influence the cells as they differentiate, move, and contribute to embryological development. In

Mechanism of Notch Signaling: The image depicts a type of cell signaling, in which two animal cells interact and transmit a molecular signal from one to the other. The process results in the production of proteins, which influence the cells as they differentiate, move, and contribute to embryological development. In the membrane of the signaling cell, there is a ligand (represented by a green oval). The ligand functions to activate a change in a receptor molecule. In the receiving cell, there are receptors; in this case, Notch proteins (represented by orange forks). The Notch proteins are embedded in the receiving cell membrane, and they have at least two parts: an intracellular domain (inside the cell) and the receptor (outside the cell). Once the ligand and receptor bind to each other, a protease (represented by the dark red triangle) can sever the intracellular domain from the rest of the Notch receptor. Inside the nucleus of the receiving cell (represented by the gray area) are the cellês DNA (represented by the multi-colored helices) and its transcription factors (blue rectangles). Transcription factors are proteins that bind to DNA to regulate transcription, the first step in gene expression, which eventually yields proteins or other products. Initially, repressor proteins (represented by a red irregular hexagon) prevent transcription factors from allowing transcription. When the severed Notch receptor intracellular domain reaches the nucleus, it displaces the repressor. The transcription factor can then signal for transcription to occur. 1) There is a Notch receptor protein in the membrane of a receiving cell, and a ligand for this receptor (for example, Delta) in the membrane of the signaling cell. When the ligand binds to the receptor, the intracellular domain of the receptor changes shape. 2) Inside the receiving cell, there are proteases. Once the intracellular domain of the receptor changes shape, the protease can bind to it and shear the intracellular domain away from the rest of the receptor molecule. 3) The severed intracellular domain is shuttled to the receiving cell nucleus. Here, the intracellular domain displaces a repressor protein. This allows a transcription factor to initiate DNA transcription. During transcription, DNA is used as a template to create RNA. Following transcription, the process of translation occurs, which uses RNA as a template to create proteins. These proteins influence the behavior, fate, and differentiation of cells, which contribute to normal embryonic development

Created2014-08-21